Large-Scale Data Management and
Distributed Systems

IV. Stream Processing

Vania Marangozova

Vania.Marangozova@imag.fr

2023-2024

mailto:Vania.Marangozova@imag.fr

References

* Lecture notes of V.Leroy

* Lecture notes of T.Ropars

* Designing Data-Intensive Applications by Martin Kleppmann
* Chapter 11

Why Stream Processing ?

* Batch Processing
e Data are stored in files
* Process the whole data at once

* Examples: Hadoop MapReduce, Spark, etc

* In many use-cases, new data are generated continuously
e Data from sensors

e Data from social networks
 Web traffic
* Etc.

=> Applications need real-time processing

Real-time Processing

In many cases, data should be processed as early as possible:

* Detecting fraudulent behavior
* Log analysis
* Access filtering

* |dentifying malfunctioning systems
* Monitoring information about crashes, non valid values, ...

* Monitoring trends

e social networks
* system load

Adapting batch processing systems?

* Processing all the data of the day at the end of each day ?
* High latency ®

* How can we process data more frequently ?

* Use stream processing/engines

Stream vs Batch processing

* Batch processing

* Good for analyzing a static dataset

* Focuses on throughput

* Allows running complex analysis requiring multiple iterations on the data

* Stream processing
* Good to analyze live data
« Continuously updates results based on new data

* Focuses on latency (between data production and update of the results)

* Processes data once

Stream Processing Computations

Typical stream analytics

* Measuring event rates

* Computing rolling statistics (average, histograms, etc)

* Comparing statistics to previous values (detecting trends)
* Sampling data

° Filtering data

* Applying basic machine learning algorithms

Aspects of the "How” Question

* How to transmit data from the producers to the consumers?
* How to process events in a distributed way?
* How to deal with failures?

* How to reason abouttime?

* How to maintain a state over time?

Stream Processing Architecture
(Element of)

* Generalization of the publish-subscribe communication paradigm

=D | | SUBSCRIBER

PUBLISHER

ﬁ -
PUBLISHER

SUBSCRIBER

®

From https://aws.amazon.com/fr/what-is/pub-sub-messaging/

Publish-Subscribe

[Broker Messages

Producers Message queue system

Send / I —
|
Send -

Pl

-

Consumers

Receive

T

ﬂ@

Notify :

Message

Stream Processing Engines

ECQ instances

00

T i e - .@
T L -

—— l Output Stream
- HTTP/
Mobile client SOCKET
: Outputs
SoUrce Input Data Stream Processing

Engine

Challenges

* Routing messages
* Some consumers are only interested in some messages

* Some messages are useful for multiple consumers

* Performance
* Amount of produced data might be huge

« Data might me produced faster than they are processed

* Faulttolerance

* Clients might connect/disconnect at any time
* The building blocks of the system (message-oriented middleware, MOM) may fail

What Data to Consider for Analysis?

* Messages are transient

* No permanent trace
« Even if written to disk, quickly deleted because of the inherent logic and
of the data volume (eg. network packets)

- if a new consumer joins, it will analyze only recent data

* Data in databases and files is persistent
« everything written is permanently recorded, until explicitly deleted !

- of a new request is done, it will analyze the same data

Can we not have a hybrid, combining the durable storage approach of
databases with the low-latency notification facilities of messaging?

Log-based Message Broker

Main principles

* Maintain a log of all the messages
received

« Append-only sequence of records on disk o System of record Derived data
o o) é % database systems

« Each record is identified with a e e iiin copiinn

sequence number " \Wd
* The offset of each client in the lo % SN ECLIECL N

g Y Log of data changes L’ Search

can be stored]‘""e"

. Data
Existing systems ———— \wa,ehouse

* Apache Kafka

* Amazon Kinesis Data Streams

Kafka

https://kafka.apache.org/

« Originally developed at LinkedIn

APACHE
 Open-source fka

A dls’rrlbuted streaming platform

« Used by many companies

Kafka Main Principles

A partitioned log
The log is divided into multiple partitions

 Each partition has its own monotonically increasing sequence number

e Partitions can be hosted on different machines

Advantages of logs

+ Old records can be replayed
* Data are buffered in the log

 Deal with the case where the consumers are slower than the producers

Kafka Communication Abstractions

—~
APACHE KAFKA 3
J G
-
—~ 5
o TOPIC 1 TOPIC 2 TOPIC 3 _
O
3— L0 I EEEE
& L] CIEEIE] EEEE
_ el e PARTITIONS «ssemsmmmcemememeend

N
SdNOyo
d43INWNSNOD

Kafka Cluster

APACHE KAFKA
— CLUSTER

(" PRODUCER)——> / TOPIC CLICK |ii| TOPIC cLICK \ «——(CONSUMER)
@ IO DDDDDD:

: | TOPIC UPLOAD | i | TOPIC UPLOAD | !
§llllll§§llllll§

Kafka Consumer Groups

source https://kafka.apache.org/documentation/#gettingStarted
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/ch04.html

Kafka Cluster
Server 1 Server 2

* Load balancing

* Broadcasting

RN
C3 |[C4 || C5 || C6

C1

-Consumer Group A@ “——Consumer Group B——

Kafka Consumer Groups

source https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/ch04.html

TopicT1 Consumer Group 1 TopicT1 Consumer Group 1
Partition 0 Consumer 1 Partition 0 | Consumer 1
Partition 1 7 Partition 1 Consumer 2
Partition 2 Partition 2 Consumer3
Partition 3 Partition 3 Consumer 4 .
TopicT1 Consumer Group 1
Partition 0 » Consumer 1
Partition 1 » Consumer2
TopicT1 Consumer Group 1 Partition 2
Partition 0 Consumer 1 "
Partition 3
Partition 1 / Consumer 2
/ \
Partition 2 / Consumer Group 2
Patiton3

Consumer 2

Kafka Topics & Partitions

Storage
Event sent

and appended
- to Partition 1

'7\.\

i

: Producer client 1
/

i
“~_____— Producerclient2 5o
i

Topic

Kafka Fault Tolerance

Data availability

» A Kafka cluster spans multiple nodes

* Partitions are replicated on multiple nodes

* Dealing with consumer disconnections/failures
« Offset of the consumer in the log partition is recorded permanently

* The same/another consumer can start processing records from this point
* Provided delivery semantics:
+ At-least-once

e At-most-once

* In some cases exactly-once semantic can be ensured (relies on transaction
mechanisms)

Stream Processing Engines

Description
+ A set of transformations is applied to a stream of records
* A program is a graph of transformations (Directed acyclic graph)

» Transformations are the same operations as in batch processing systems

Examples
* Storm
* Flink
* Samza

 Spark streaming

Graph of transformations (Flink)

source https://ci.apache.org/projects/flink/flink-docs-release-1.6/ concepts/programming-model.html

DataStream<String> lines = env.addSource (J_

new FlinkKafkaConsumer<>(..)): oo

DataStream<Zvent> events = lines.map((line) -> parse(line)); } Transformation

DataStream<Statistics> stats = events
.keyBy ("id") Transformation
.timeWindow (Time.seconds (10))
.apply (new MyWindowAggregationFunction());

stats.addSink (new RollingSink(path)); } Sink
Source Transformation Sink
Operator Operators Operator
/ e ™N \
Source map{) E— mm(()))’/ E=— Sink
I /
| J
|

. Streamini Dataflow

Parallel Dataflow (Flink)

Source map()

keyBy()/ Streaming Datafiow
=— w:::g;(o)/) | Sink (condenged Vi

S

map()
(1]

map()
[2]

—

—

keyBy()/
window()/
apply()
1]

keyBy()/

window()/

apply()
2]

Streaming Datafiow
(parallelized view)

—

parallelism = 1

Making Time Discrete

To run computations on a continuous stream, it has to be split into windows.

Size of the window
« 1 event: Each event is processed separately (Storm)
* Window's limits are based on:

* Amount of data received
* Time

* Activity (concept of sessions)

2 reference times co-exists in the system
« Event time: time at which the events happened

* There is also the time at which the event has been published
* Processing time: time at which the events are processed

* Most systems build windows based on the processing time

Time Disorder

https://docs.hazelcast.com/hazelcast/s.3/pipelines/event-time

Something
Happened
at 08:12

Event
Time

Processing
Time

I Instant.now() = 08:13

I 08:12

Time Disorder

Something
Happened
at 08:12

Event
Time

Processing
Time

l0g:12 | Instant.now() = 08:13
Processing Time
Ordered
Event Time
0 O © E
Latency > 0
Lag=0

Time Disorder

Something
Happened
at 08:12

Event
Time

Processing
Time

l0g:12 | Instant.now() = 08:13

Processing Time

Lagging Events

Event Time

Not ordered => Maximum event lag ? 9

Windows

Processing Time

Lagging Events

Event Time

Types of Windows

Sliding window: Fixed-size window

* Anew window is considered at each time step

Sliding Window

SN Sliding |

Types of Windows

* Tumbling window: Fixed-size window

* Each event belongs to one window

-

Tumbling Window

1 Tumbling |

Types of Windows

e Session window: size not fixed

* Group together events that happened closely together in time

Session Window

Session 1 Session 2

—locoeo] leocol 5

Types of Windows

* Hopping window: Fixed-size window, windows overlap

* hop size = time between the generation of two windows

* hop size < window size

Input events

HE N [| [] [| [] | Time — 105
_
H B
HE BN
. . . . All 5s sliding windows
| | [| O
| || [1 |
il [HER
[| [1 [| [|
[| HEE [| |

Spark Streaming

Based on micro-batches

 The data stream is divided into micro-batches
* Tumbling windows

+ Typically 1to 4 seconds
* Each micro-batch is a RDD

* Multiple receivers can be created to manipulate multiple data streams in parallel

* The receiver tasks are distributed over the workers

input data batches of batches of
stream Spark Input data Spark processed
|:> Streaming Engine

The Lambda architecture

source https:// www.oreilly.com/ideas/questioning-the-lambda-architecture

Storm Serving DB(s)

Kafka Cluster
/+ processing_job ~\§
speed_table

input_topic K :
Hadoop queries> App

batch_table J/

The Lambda Architecture

Motivations

* Combination of batch processing and stream processing in a single
architecture
 Stream processing allows building fast (approximate) views of the data
 Batch processing is used for more complex (and accurate) data analysis

Limits
Architecture becoming less popular (lambda-less architecture)
* Maintaining two code bases is costly

* Processing engines start allowing doing both (Spark, Flink)

« Stream processing engines are becoming more mature, they allow running more
complex computations

* Log-based message brokers allow processing the same record multiple times

Additional References

* https://www.oreilly.com/ideas/ the-world-beyond-batch-streaming-101,
T. Akidau, 2015.

* Apache Flink: Stream and Batch Processing in a Single Engine., P.
Carbone et al., IEEE, 2015.

* https://www.oreilly.com/ideas/ questioning-the-lambda-architecture, J.
Kreps, 2014.

