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• Lecture notes of V.Leroy

• Lecture notes of  T.Ropars

• Designing Data-Intensive Applications by Martin Kleppmann
• Chapter 11
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• Batch Processing
• Data are stored in files

• Process the whole data at once

• Examples: Hadoop MapReduce, Spark, etc

• In many use-cases, new data are generated continuously
• Data from sensors

• Data from social networks 

• Web traffic

• Etc.

=> Applications need real-time processing

V.Marangozova LSDM 2023-2024 3



In many cases, data should be processed as early as possible: 

• Detecting fraudulent behavior
• Log analysis
• Access filtering
• ...

• Identifying malfunctioning systems
• Monitoring information about crashes, non valid values, ...

• Monitoring trends 
• social networks
• system load
• ...
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• Processing all the data of the day at the end of each day ?
• High latency L

• How can we process data more frequently ?
• Use stream processing/engines
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• Batch processing
• Good for analyzing a static dataset

• Focuses on throughput

• Allows running complex analysis requiring multiple iterations on the data

• Stream processing
• Good to analyze live data

• Continuously updates results based on new data

• Focuses on latency (between data production and update of the results)

• Processes data once
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Typical stream analytics

• Measuring event rates

• Computing rolling statistics (average, histograms, etc)

• Comparing statistics to previous values (detecting trends) 

• Sampling data

• Filtering data

• Applying basic machine learning algorithms
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• How to transmit data from the producers to the consumers? 

• How to process events in a distributed way? 

• How to deal with failures?

• How to reason about time?

• How to maintain a state over time?

V.Marangozova LSDM 2023-2024 8



• Generalization of the publish-subscribe communication paradigm

V.Marangozova LSDM 2023-2024 9

From https://aws.amazon.com/fr/what-is/pub-sub-messaging/



 Broker Messages
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• Routing messages
• Some consumers are only interested in some messages 

• Some messages are useful for multiple consumers

• Performance
• Amount of produced data might be huge

• Data might me produced faster than they are processed

• Fault tolerance
• Clients might connect/disconnect at any time

• The building blocks of the system (message-oriented middleware, MOM) may fail
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• Messages are transient
• No permanent trace

• Even if written to disk, quickly deleted because of the inherent logic and 
of the data volume (eg. network packets)

• if a new consumer joins, it will analyze only recent data

• Data in databases and files is persistent
• everything written is permanently recorded, until explicitly deleted !

• of a new request is done, it will analyze the same data

Can we not have a hybrid, combining the durable storage approach of 
databases with the low-latency notification facilities of messaging?
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Main principles

• Maintain a log of all the messages 
received 
• Append-only sequence of records on disk

• Each record is identified with a 
sequence number 

• The offset of each client in the log 
can be stored

Existing systems

• Apache Kafka

• Amazon Kinesis Data Streams
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• Originally developed at LinkedIn 

• Open-source

• Used by many companies
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A partitioned log

The log is divided into multiple partitions
• Each partition has its own monotonically increasing sequence number

• Partitions can be hosted on different machines 

Advantages of logs
• Old records can be replayed

• Data are buffered in the log
• Deal with the case where the consumers are slower than the producers
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• Load balancing 

• Broadcasting

source https://kafka.apache.org/documentation/#gettingStarted 
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/ch04.html

V.Marangozova LSDM 2023-2024 19



source https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/ch04.html
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Data availability
• A Kafka cluster spans multiple nodes

• Partitions are replicated on multiple nodes

• Dealing with consumer disconnections/failures
• Offset of the consumer in the log partition is recorded permanently

• The same/another consumer can start processing records from this point

• Provided delivery semantics: 
• At-least-once

• At-most-once

• In some cases exactly-once semantic can be ensured (relies on transaction 
mechanisms)
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Description
• A set of transformations is applied to a stream of records 

• A program is a graph of transformations (Directed acyclic graph)

• Transformations are the same operations as in batch processing systems

Examples
• Storm

• Flink

• Samza

• Spark streaming
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source https://ci.apache.org/projects/flink/flink-docs-release-1.6/ concepts/programming-model.html 
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To run computations on a continuous stream, it has to be split into windows.

Size of the window
• 1 event: Each event is processed separately (Storm) 
• Window's limits are based on:

• Amount of data received
• Time

• Activity (concept of sessions)

2 reference times co-exists in the system
• Event time: time at which the events happened

• There is also the time at which the event has been published

• Processing time: time at which the events are processed
• Most systems build windows based on the processing time
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https://docs.hazelcast.com/hazelcast/5.3/pipelines/event-time 
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Ordered
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Not ordered => Maximum event lag ?
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Sliding window: Fixed-size window

• A new window is considered at each time step



• Tumbling window: Fixed-size window
• Each event belongs to one window
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• Session window: size not fixed
• Group together events that happened closely together in time
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• Hopping window: Fixed-size window, windows overlap
•  hop size = time between the generation of two windows

• hop size < window size
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Based on micro-batches
• The data stream is divided into micro-batches 

• Tumbling windows

• Typically 1 to 4 seconds

• Each micro-batch is a RDD

• Multiple receivers can be created to manipulate multiple data streams in parallel

• The receiver tasks are distributed over the workers
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source https://www.oreilly.com/ideas/questioning-the-lambda-architecture
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Motivations
• Combination of batch processing and stream processing in a single 

architecture
• Stream processing allows building fast (approximate) views of the data
• Batch processing is used for more complex (and accurate) data analysis

Limits

Architecture becoming less popular (lambda-less architecture)
• Maintaining two code bases is costly
• Processing engines start allowing doing both (Spark, Flink)
• Stream processing engines are becoming more mature, they allow running more 

complex computations
• Log-based message brokers allow processing the same record multiple times
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•  https://www.oreilly.com/ideas/ the-world-beyond-batch-streaming-101, 
T. Akidau, 2015.

• Apache Flink: Stream and Batch Processing in a Single Engine., P. 
Carbone et al., IEEE, 2015.

• https://www.oreilly.com/ideas/ questioning-the-lambda-architecture, J. 
Kreps, 2014.
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