Large-Scale Data Management and Distributed Systems

IV. Stream Processing

Vania Marangozova <u>Vania.Marangozova@imag.fr</u>

2023-2024

References

- Lecture notes of V.Leroy
- Lecture notes of T.Ropars
- Designing Data-Intensive Applications by Martin Kleppmann
 - Chapter 11

Why Stream Processing ?

• Batch Processing

- Data are stored in files
- Process the **whole** data at once
- Examples: Hadoop MapReduce, Spark, etc

• In many use-cases, **new data are generated continuously**

- Data from sensors
- Data from social networks
- Web traffic
- Etc.

=> Applications need real-time processing

Real-time Processing

In many cases, data should be processed **as early** as possible:

- Detecting fraudulent behavior
 - Log analysis
 - Access filtering
 - ...
- Identifying malfunctioning systems
 - Monitoring information about crashes, non valid values, ...
- Monitoring trends
 - social networks
 - system load
 - ...

Adapting batch processing systems?

- Processing all the data of the day at the end of each day ?
 - High latency ☺
- How can we process data more frequently?
 - Use stream processing/engines

Stream vs Batch processing

• Batch processing

- Good for analyzing a static dataset
- Focuses on throughput
- Allows running **complex** analysis requiring multiple iterations on the data

• Stream processing

- Good to analyze live data
- Continuously updates results based on new data
- Focuses on **latency** (between data production and update of the results)
- Processes data once

V.Marangozova

Stream Processing Computations

Typical stream analytics

- Measuring event rates
- Computing rolling statistics (average, histograms, etc)
- Comparing statistics to previous values (detecting trends)
- Sampling data
- Filtering data
- Applying basic machine learning algorithms

Aspects of the "How" Question

- How to transmit data from the producers to the consumers?
- How to process events in a distributed way?
- How to deal with failures?
- How to reason about time?
- How to maintain a state over time?

Stream Processing Architecture (Element of)

• Generalization of the **publish-subscribe** communication paradigm

From https://aws.amazon.com/fr/what-is/pub-sub-messaging/

Publish-Subscribe

V.Marangozova LSDM 2023-2024 10

Stream Processing Engines

11

Challenges

- Routing messages
 - Some consumers are only interested in some messages
 - Some messages are useful for multiple consumers
- Performance
 - Amount of produced data might be huge
 - Data might me produced faster than they are processed
- Fault tolerance
 - Clients might connect/disconnect at any time
 - The building blocks of the system (message-oriented middleware, MOM) may fail

What Data to Consider for Analysis?

- Messages are transient
 - No permanent trace
 - Even if written to disk, quickly deleted because of the inherent logic and of the data volume (eg. network packets)
 - if a new consumer joins, it will analyze only recent data
- Data in databases and files is persistent
 - everything written is permanently recorded, until explicitly deleted !
 - of a new request is done, it will analyze the same data

Can we not have a hybrid, combining the durable storage approach of databases with the low-latency notification facilities of messaging?

V.Marangozova

Log-based Message Broker

Main principles

- Maintain a log of all the messages received
 - Append-only sequence of records on disk
- Each record is identified with a sequence number
- The offset of each client in the log can be stored

Existing systems

- Apache Kafka
- Amazon Kinesis Data Streams

https://kafka.apache.org/

- Originally developed at LinkedIn
- Open-source
- Used by many companies

Kafka Main Principles

A partitioned log

The log is divided into multiple partitions

- Each partition has its own monotonically increasing sequence number
- Partitions can be hosted on different machines

Advantages of logs

- Old records can be replayed
- Data are buffered in the log
 - Deal with the case where the consumers are slower than the producers

Kafka Communication Abstractions

Kafka Cluster

Kafka Consumer Groups

source https://kafka.apache.org/documentation/#gettingStarted https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/ch04.html

- Load balancing
- Broadcasting

Kafka Consumer Groups

source https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/ch04.html

V.Marangozova

Kafka Topics & Partitions

V.Marangozova

Kafka Fault Tolerance

Data availability

- A Kafka cluster spans multiple nodes
- Partitions are replicated on multiple nodes
- Dealing with consumer disconnections/failures
 - Offset of the consumer in the log partition is recorded permanently
 - The same/another consumer can start processing records from this point
 - Provided delivery semantics:
 - At-least-once
 - At-most-once
 - In some cases exactly-once semantic can be ensured (relies on transaction mechanisms)

Stream Processing Engines

Description

- A set of transformations is applied to a stream of records
- A program is a graph of transformations (Directed acyclic graph)
- Transformations are the same operations as in batch processing systems

Examples

- Storm
- Flink
- Samza
- Spark streaming

Graph of transformations (Flink)

source https://ci.apache.org/projects/flink/flink-docs-release-1.6/ concepts/programming-model.html

V.Marangozova

LSDM 2023-2024

25

Making Time Discrete

To run computations on a continuous stream, it has to be split into windows.

Size of the window

- 1 event: Each event is processed separately (Storm)
- Window's limits are based on:
 - Amount of data received
 - Time
 - Activity (concept of sessions)

2 reference times co-exists in the system

- Event time: time at which the events happened
 - There is also the time at which the event has been published
- Processing time: time at which the events are processed
 - Most systems build windows based on the processing time

Time Disorder

https://docs.hazelcast.com/hazelcast/5.3/pipelines/event-time

Ordered

Windows

Sliding window: Fixed-size window

• A new window is considered at each time step

Sliding Window

- Tumbling window: Fixed-size window
 - Each event belongs to one window

Tumbling Window

- Session window: size not fixed
 - Group together events that happened closely together in time

Session Window

V.Marangozova	LSDM 2023-2024	33

- Hopping window: Fixed-size window, windows overlap
 - hop size = time between the generation of two windows
 - hop size < window size

Spark Streaming

Based on micro-batches

- The data stream is divided into micro-batches
 - Tumbling windows
 - Typically 1 to 4 seconds
- Each micro-batch is a RDD
- Multiple receivers can be created to manipulate multiple data streams in parallel
- The receiver tasks are distributed over the workers

The Lambda architecture

source https://www.oreilly.com/ideas/questioning-the-lambda-architecture

The Lambda Architecture

Motivations

- Combination of batch processing and stream processing in a single architecture
 - Stream processing allows building fast (approximate) views of the data
 - Batch processing is used for more complex (and accurate) data analysis

Limits

Architecture becoming less popular (lambda-less architecture)

- Maintaining two code bases is costly
- Processing engines start allowing doing both (Spark, Flink)
- Stream processing engines are becoming more mature, they allow running more complex computations
- Log-based message brokers allow processing the same record multiple times

Additional References

- https://www.oreilly.com/ideas/ the-world-beyond-batch-streaming-101, T. Akidau, 2015.
- Apache Flink: Stream and Batch Processing in a Single Engine., P. Carbone et al., IEEE, 2015.
- https://www.oreilly.com/ideas/ questioning-the-lambda-architecture, J. Kreps, 2014.