Large-Scale Data Management and
Distributed Systems

V. NoSQL Databases

Vania Marangozova

Vania.Marangozova@imag.fr

2023-2024

mailto:Vania.Marangozova@imag.fr

References

* Lecture notes of V.Leroy

* L[ecture notes of F.Zanon Boito

Lecture notes of FT.Ropars

Designing Data-Intensive Applications by Martin Kleppmann
* Chapter2and 7

In this lecture

* Motivations for NoSQL databases
* ACID properties and CAP Theorem

* Alandscape of NoSQL databases

Data is Central

Processing / Database Link

e.g. sentiment

Stream Job
analysis

Batch Job
(Hadoop, Spark) (Spark, Storm)

Load data

Database

e.g. Twitter

Application 1 Application 2 Application 3 trends pige

Data Depends on the App !

Stock management { }

Health insurance management

* Structure ? - schema ?
Health records management
« Access ? - whole/part ?
Payroll
_ * Queries ? - simple, complex ?
Shopping
* Volume ? - centralized/distributed ?

« Evolution ? - add attributes ?

Tweet news
TikTok "news"...

 Guarantees ? - types ?

Common Patterns of Data Accesses

Large-scale data processing

* Batch processing: Hadoop, Spark, etc.

* Perform some computation/transformation over a full dataset
* Process all data

Selective query

* Access a specific part of the dataset

* Manipulate only data needed (1 record among millions)

* Main purpose of a database system

Types of Databases

So far we used HDFS

* Afile system can be seen as a very basic database
* Directories / files to organize data
» Very simple queries (file system path)

 Very good scalability, fault tolerance ...

* Other end of the spectrum: relational databases
« SQL query language, very expressive
* Limited scalability

* Very complex data evolutivity

Size / Complexity

4
Graph DB

> Relational
K DB

o Column DB

5

Key/Value
U
>

Size

Size / Complexity / Facility to Change Data

4

Graph DB

DB Document
DB

Key/Value
DB

Complexity

Filesystem

>

Size

Facility to make data evolve

The NoSQL Jungle

Document Database Graph Databases
KN - o .
() .
AP ‘: Couchbase . O NEO4]
() \o*
o] @
® MarkLogic .
oo 0 InfiniteGraph
mongo DB The Distributed Graph Database
Wide Column Stores Key-Value Databases

accurmuLo

HYPERTABLE«

AR PRACHE
QQ.}‘ Cassandra HBHSE
Amazon SimpleDB

AEROSPIKE

Relational Databases: SQL

* Borninthe 70's - Still heavily used
* Data is organized into relations (in SQL: tables)

* Each relation is an unordered collection of tuples (rows)

Students
ID# |Name |Phone DOB
500 | Matt 555-4141 06/03/70
501 |Jenny 867-5309 3/15/81
502 | Sean 876-9123 10/31/82
]
ID# (lassID | Sem
500 1001 Fallo2 ClassID | Title ClassNum
501 1002 Fallo2 1001 Intro to Informatics 1101
501 1002 Spr03 1002 Data Mining 1400
502 1003 5203 1003 Intemet and Society 1400
Takes_Course Courses

SQL: Structured Query Language

* Separate the data from the code
* High-level language

* Space for optimization strategies

* Powerful query language
 Clean semantics

* Operations on sets

* Support for transactions

Motivations for Alternative Models
Limitations of Relational Databases

Performance and scalability

* Difficult to partition the data (in general run on a single server)

* Need to scale up to improve performance

Lack of flexibility
» Will to easily change the schema
* Need to express different relations

* Not all data are well structured

Few open source solutions

Mismatch between the relational model and object-oriented
programming model

lllustration of the Object-Relationadl Mlsmatch

Figure by M. Kleppmann i e S oy ey P s
Bill Gates 251 Bill Gates Co-chair of ... blogger.
Greater Seattle Area | Philanthropy 7 region_id | industry_id photo_id
] 9 us9 1319 57817532
sy /
Co-chair of the Bill & Mefinda Gates Foundation. regions table industries table
Chairman, Microsoft Corporation. Voracious d | / region_name i | industry_name
N T B S~ us? |/Greater Boston Area 43 | Financial Services
Experience us91 | Greater Seattle Area 48 Construction
Co-chair » Bill & Melinda Gates Foundation 131 | Philanthropy
2000 - Present
Co-founder, Chairman « Microsoft
1975 - Present paskitens bl
Education id)\ userid job_titke organization
Harvard University 458 251 Co-chair Bill & Melinda Gates F...
o 457 251 Co-founder, Microsoft
Lakeside School, Seattle Chairman
Contact Info education table
Blog: thegatesnotes.com o user_id school_name start end
T — 807 251 Harvard University | 1973 | 1975
806 251 Lakeside School, | NULL | NULL
Seattle
contact_info table
d user_id type url
155 251 blog | httpu/ithegatesnotes.com
156 251 twitter | httpu/twitter.com/BillGates

Figure: A CV in a relation database

lllustration of the Object-Relational Mismatch

Figure by M. Kleppmann

"user_id":251,
" first_name”: " Bill",
"last_name”: " Gates”,
"summary”: " Co—chair of the Bill & Melinda Gates; Active blogger.”,
"region_id": "us:91",
"industry_id": 131,
" photo_url”: " /p/7/000/253/05b/308dd6e.jpg",
" positions”: |
{" job_title": " Co—chair", "organization”: " Bill & Melinda Gates
Foundation” },
{" job_title": " Co—founder, Chairman”, "organization”: " Microsoft” }
],
"education”: |
{"school_name”: "Harvard University”, "start”: 1973, "end": 1975},
{"school_name”: " Lakeside School, Seattle”, "start”: null, "end”: null}

" contact_info": {
"blog”: "http://thegatesnotes.com”,
"twitter”: " http:/ /twitter.com/BillGates”
}
}

Figure: A CV in a JSON document

NoSQL

What is NoSQL?
* A hashtag

* NoSQL approaches were existing before the name became famous

* No SQL
* New SQL
* Notonly SQL

* Relational databases will continue to exist alongside non-relational datastores

A variety of NoSQL solutions

Difference with relational databases

* Properties =

guarantees

* Data models =
data structure

* Underlying architecture =
implementation and performance

On Guarantees : Transactions

* The concept of transaction @ @

* Groups several read and write operations into a
logical unit

. Operation 1 Operation 1
» A group of reads and writes are executed as one . A

operation: l l

¢ The entire transaction succeeds (commit)

Operation 2 Operation 2
« orthe entire transaction fails (abort, rollback) ¢
* |f atransaction fails,
Operation N Operation N

the application can safely retry

Example of Transaction

Transaction

Database

Commit

esersasancsnesancenannnes C
%Reserve seat Rollback J

Why Transactions 2

* Crashes may occur at any time
* On the database side
* On the application side

» The network might not be reliable

* Several clients may write to the database at the same time

ACID Properties

* Having such properties make the _
, ACID Properties
life of developers easy, but: N

. . Atomicit
» ACID properties are not the same in L) e

' " Each transaction is “all or nothing”
\ g

all databases A\

. . Consistenc
* |tis not even the same in all SQL | i

databases

Data should be valid according to all defined rules

Isolation

* NoSQL solutions tend to provide

weaker safety guarantees

* To have better performance,
scalability, etc.

Atomicity

Description

* Atransactions succeeds completely or fails completely

* If a single operation in a transaction fails, the whole transaction should fail

* If a transaction fails, the database is left unchanged
* |tshould be able to deal with any faults in the middle of a transaction

* |f atransaction fails, a client can safely retry

In the NoSQL context:

* Atomicity is still ensured

Consistency

Description

* Ensures that the transaction brings the database from a valid state to
another valid state
 All university staff is paid at the end of month

e [tis a property of the application, not of the database

In the NoSQL context:

e Consistency is (often) not discussed

Durability

Description
* Ensuresthat once a transaction has committed successfully, data will not
be lost

* Even if a server crashes (flush to a storage device, replication)

In the NoSQL context:

* Durability is also ensured

Isolation

Description
* Concurrently executed transactions are isolated from each other

* We need to deal with concurrent transactions that access the same data

* Serializability
» High level of isolation where each transaction executes as if it was the only
transaction applied on the database

* As if the transactions are applied serially, one after the other

* Many SQL solutions provide a lower level of isolation

In the NoSQL context:

* |Letus have a look atthe CAP theorem

The CAP Theorem (E. Brewer, 2000)

3 properties of databases

Consistency

°* What guarantees do we have on the value returned by a read
operation?
* It strongly relates to Isolation in ACID (and not to consistency)
Availability
* The system should always accept updates

Partition tolerance

* The system should be able to deal with a partitioning of the network

The CAP Theorem States

It is impossible to have a system that provides Consistency,
Availability, and Partition tolerance at the same time.

Partitionning (failures) are inevitable in a large scale distributed setting =>
need to choose between availability and consistency

In the CAP theorem:

* Consistency is meant as linearizability (the strongest consistency
guarantee)

* Availability is meant as total availability

In practice, different trade-offs can be provided

The Intuition Behind CAP

>
i
w
@ >
o
w

5
3

Partitioning

y
@ >

The impact of CAP on ACID for NoSQL

The main consequence

* No NoSQL database with strong Isolation

The othe ACID properties ?
* Atomicity
 Each side should ensure atomicity

* Durability

* Should never be compromised

Key-Value Store

hash

* Data are stored as key-value pairs
keys function buckets

* The value can be a data structure (eg, a list)

* |n general, only support single-object
transactions
* In this case, key-value pairs

* Examples:
* Redis
* Voldemort

* Use case: Image by J. Stolfi
« Scalable cache for data

* Note that some solutions ensure durability by
writing data to disk

Column Family Stores

Data are organized in rows and columns (Tabular data store)
* The data are arranged based on the rows
* Column families are defined by users to improve performance
* Group related columns together

Only support single-object transactions
* |In this case, a row

Examples:
« BigTable/HBase

« Cassandra

* Use case:
+ Data with some structure with the goal of achieving scalability and high throughput

* Provide more complex lookup operations than KV stores

Column Family Stores

Order Table
(f - =V N \\\
Family: Customer Family: Items Family: Delivery
Notes
FirstName Surname Item-4 Item-9 .
Riozv."sK;aY Adam Fowler 2 1 l.'::‘v;h\;n“m
ETA
MemberlD Status Item-43
831642 Premier 6 201:9-;;-23
Ko \ ZAAN VAN J)
- s N\ [Nl SN
Family: Customer Family: Items Family: Delivery
FirstName Surname Item-72
RowKey Joe Bloggs 2
895482
ETA
m«:m 2015-01-03
14:.00
ks R PES ¥ 4" J ')
N) X

Note that not a row does not need to have an entry for all columns

Document Databases

* Data are organized in Key-Document pairs
* A documentis a nested structure with embedded metadata
* No definition of a global schema
« Popular formats: XML, JSON

Only support single-object transactions
* In this case, a document or a field inside a document

Examples:
* MongoDB
« CouchDB

* Use case:
* An alternative to relational databases for structured data
« Offer aricher set of operations compared to KV stores:
* Update, Find, etc.

A document can
have one or
more documents
inside.

Document Databases

"_id": Objectid ("51c4218"),
“name": "Claudia",
“NumberKids": 3,
“isActive™: true,

“interests": ["swimming", "tennis")

“favoriteCountries":
[
{

"name": "France",

“capital” : "Paris"

{

}
]

“name”: "Japan"

3072,
“name": "Rubby"
“friends": 354,
“favorite Country":
{
“name”: "Italy",
“capital”: "Rome"
}

’ Embedded document

> Embedded document

> Embedded document

Graph Databases

e Represent data as graphs
— Nodes / relationships with properties as K/V pairs

age: 29
name: Thomas Andersson

ﬁ name: The Architect

Graph DB : Neogj

* Rich data format

* Query language as paSern matching

* Limited scalability : replicacation to scale reads, writes need to be done to every
replica Cypher Query Language . neoy)

Node Node
SN e
ey w— " v
MATCH (:Person { name:“Dan”}) -[:KNOWS]-> (:Person { name:“Ann”"})

Label Property Label Property

Relationships in Data

* Many-to-one
* Example: Many people went to the same university
* One-to-Many: An item may have several entries of the same kind
« Example: One person may have had several positions during her career
* Document DB allow storing such information easily and allow simple read
operations
* Many-to-Many
* Example: Several persons may have worked in the same company.
» Graph DB

Many-to-One

Relational vs Document DB

Relational databases use a foreign key

* Consistency and low memory footprint (normalization)
* Easy updates and support for joins

* Difficult to scale

Document databases duplicate data

* Efficient read operations

* Easyto scale

* Higher memory footprint and updates are more difficult (risk of consistency
issues)

 Transactions on multiple objects could be very useful in this case

* Join operations have to be implement by the application

Google BigTable

* Column family data store

* Data storage system used by many Google services: Youtube,Google
maps, Gmail, etc.
* Paper published by Google in 2006 (F. Chang et al)

* Now available as a service on Google Cloud

°* Many ideas reused in other NoSQL databases

Motivations

* A system that can stores very large amount of data
« TB or PB of data
* Avery large number of entries
* Small entries (each entry is an array of bytes)

* Asimple data model
+ Key-value pairs (A key identifies a row)
* Multi-dimensional data
» Sparse data
« Data are associated with timestamps

* Works at very large scale
* Thousands of machines

* Millions of users

About the Data Model

* Rows are identified by keys (arbitrary strings)
* Modifications on one row are atomic

* Rows are maintained in lexicographic order

* Columns are grouped in columns families
* Columns can be sparse

* Clients can ask to retrieve a column family for one row

* Each cell can contain multiple versions indexed by a timestamp
» Assigned by BigTable or by the client

* Most recent versions are accessed first

* GC politics: Keep last n versions or Keep all new-enough versions

About the Data Model

row keys column family column family colurmn family
¥ 3 A A A
f N Ar AL . |
“language:” “contents:” anchor:cnnsi.com anchor:mylook.ca
com,aaa EN <IDOCTYPE htmi
4 PUBLIC.
e cOm.CNN.WWwW EN <!IDOCTYPE “CNN" “CNN.com”
§ HTML PUBLIC...
com.cnn.www/TECH EN <!IDOCTYPE
com.weather EN <!IDOCTYPE
v HTML>. ..

"contents:" "anchor:cnnsi.com" "anchor:my.look.ca"
| |

I O S O OO SO S

I "=htmi>2."
| Lrishtmint o

"com.cnn.www" — >) l:_dlt:ll:)'.'..
<htmi> g

-

Building Blocks of BigTable

* A master
 Assign tablets to severs
* With the help of a locking service

* Tablet servers
« Store the tables (divided in tablets)

* Process client requests

* Tablets

* Stored as SSTables (Sorted string tables)
* Stored in the Google File System for durability

Implementation of Tablets

memtable Read Op
Memory

GFS / K

tablet log

Write Op

SSTable Files

Write Operation

* Data stored in memory (Memtable)

« Any update is written to a commit log on GFS for durability
* The log is shared between all hosted tablets

* Periodic writes to disk

* When the Memtable becomes too big:
» Copied as a new SSTable to GFS

« Multiple SSTables are created if locality groups are defined (based on column families)
* Reduces the memory footprint and reduces the amount of work to do during recovery

+ SSTables are immutable (no problem of concurrency control)

Read Operation

* The state of the tablet = the Memtable + all SSTables

* A merged view needs to be created
* The Memtable and the SSTables may contain delete operations

* Locality groups help improving the performance of read operations

* Major compaction
* When the number of SSTables becomes too big, merge them into a single SSTable
 Allow reclaiming resources for deleted data

* Improve the performance of read operations

Bloom Filters and Reads

* During a read operation, potentially several SSTables need to be read

* How to avoid reading all SSTables when not needed?

¢ Use of Bloom filters (1970 1)
* Data structure that allows us to know if a SStable contains an entry for a given key-
column pair

* Bloom filter
* Implements a membership function (is X in the set?)
* If the bloom filter answers no: it is guaranteed that X is not present
* If the bloom filter answers yes: the element is in the set with a high probability

* Good trade-off between accuracy and memory footprint

About bloom filters
® A vector of n bits and k hash functions

® On insert:

» Compute the k hash values
> Set the corresponding bits to 1 in the vector

® On lookup:

» Compute the k hash values
» Test whether all bits are set to 1

%521

Apache Cassandra

* Column family data store

* Paper published by Facebook in 2010 (A. Lakshman and P. Malik)
* Used for implementing search functionalities

* Released as open source

* Build on top of several ideas introduced by BigTable

* Warning: Many changes in the design have been made since the first version of

Cassandra
%

cassandra

Partionning in Cassandra

Ideas from DHT = Distributed Hash Tables

» Hash function: hash(x) e
0 __' = x mod 10 ?(——| 1
1 ——» » Insert numbers 0, 1, 4, —
2 9, 16, and 25 : ~=
: " » Easy to find if a given y (l\ > ::

key is present in the ¢ ey

: = table ; o
: * ==
8 E
: 2

l DHT: Principle

' In a DHT, each node is = ——[0
responsible for one or more P —
hash buckets e

= As nodes join and leave, the B .
responsibilities change ’m N

“ Nodes communicate among : =5
themselves to find the 1ioe TLe
responsible node ;

= Scalable communications m
make DHTs efficient 2 e

“ DHTs support all the normal

hash table operations Lectures of Prof. Jussi Kangasharju,

http://www.cs.helsinki.fi/u/jakangas/

http://www.cs.helsinki.fi/u/jakangas/

Partionning in Cassandra

Partitioning based on a hashed name space

* Data items are identified by keys

* Data are assigned to nodes based on a hash of the key
* Tries to avoid hot spots

Namespace represented as a ring

* Allows increasing incrementally the size of the system

* Each node is assigned a random identifier
* Defines the position of a node in the ring

* The nodes is responsible for all the keys in the range between its identifier and
the one of the previous node.

Partionning in Cassandra

Limits : High risk of imbalance
* Some nodes may store more keys than others

* Nodes are not necessarily well distributed on
the ring, especially true with a low number of
nodes

Issues when nodes join or leave the system

* When a node joins, it gets part of the load of
its successor

 When a node leaves, all the corresponding
keys are assigned to the successor

Partitioning and Virtual Nodes

Concept of virtual nodes

Assign multiple random positions
to each node

The key space is better distributed between the nodes

Partitioning and virtual nodes

e,
A

If a node crashes, the load is redistributed between multiple nodes

Partitioning and Replication

ltems are replicated for fault tolerance.

* Simple strategy

* Place replicas on the next R nodes in the ring

* Topology-aware placement

* lterate through the nodes clockwise until finding a node meeting the required
condition

* For example a node in a different rack

Replication in Cassandra

Replication is based on quorums

* Aread/write request might be sent to a subset of the replicas

* To tolerate f faults, it has to be sentto f + 1 replicas

* Consistency
* The user can choose the level of consistency

+ Trade-off between consistency and performance (and availability)

* Eventual consistency

* If an item is modified, readers will eventually see the new value

A Read/Write request

Figure from https://dzone.com/articles/introduction-apache-cassandras

Cassandra
Client

® A client can contact any node in the system

® The coordinator contacts all replicas

® The coordinator waits for a specified number of responses
before sending an answer to the client

Consistency Levels

ONE (default level)
* The coordinator waits for one ack on write before answering the client
* The coordinator waits for one answer on read before answering the client

* Lowest level of consistency
* Reads might return stale values
* We will still read the most recent values in most cases

QUORUM
* The coordinator waits for a majority of acks on write before answering the client
* The coordinator waits for a majority of answers on read before answering the client

* High level of consistency

+ Atleast one replica will return the most recent value

References

* Bigtable: A Distributed Storage System for Structured Data., F. Chang et
al., OSDI, 2006.

* Cassandra: a decentralized structured storage system ., A. Lakshman et
al., SIGOPS OS review, 2010.

* http://martin.kleppmann.com/2015/05/11/ please-stop-calling-
databases-cp-or-ap.html, M. Kleppmann, 2015.

* https://jvns.ca/blog/2016/11/19/ a-critique-of-the-cap-theorem/,
J. Evans, 2016.

