
Vania Marangozova

Vania.Marangozova@imag.fr

2023-2024

mailto:Vania.Marangozova@imag.fr

• Lecture notes of V.Leroy

• Lecture notes of F.Zanon Boito

• Lecture notes of FT.Ropars

• Designing Data-Intensive Applications by Martin Kleppmann
• Chapter 2 and 7

2V.Marangozova LSDM 2023-2024

• Motivations for NoSQL databases

• ACID properties and CAP Theorem

• A landscape of NoSQL databases

V.Marangozova LSDM 2023-2024 3

V.Marangozova LSDM 2023-2024 4

Stock management

Health insurance management

Health records management

Payroll

Shopping

Tweet news

TikTok "news"...

...

• Structure ? – schema ?

• Access ? – whole/part ?

• Queries ? – simple, complex ?

• Volume ? – centralized/distributed ?

• Evolution ? – add attributes ?

• Guarantees ? – types ?

V.Marangozova LSDM 2023-2024 5

Design questions

Large-scale data processing

• Batch processing: Hadoop, Spark, etc.

• Perform some computation/transformation over a full dataset

• Process all data

Selective query

• Access a specific part of the dataset

• Manipulate only data needed (1 record among millions)

• Main purpose of a database system

V.Marangozova LSDM 2023-2024 6

So far we used HDFS

• A file system can be seen as a very basic database
• Directories / files to organize data

• Very simple queries (file system path)

• Very good scalability, fault tolerance ...

• Other end of the spectrum: relational databases
• SQL query language, very expressive

• Limited scalability

• Very complex data evolutivity

V.Marangozova LSDM 2023-2024 7

V.Marangozova LSDM 2023-2024 8

V.Marangozova LSDM 2023-2024 9

Facility to make data evolve

V.Marangozova LSDM 2023-2024 10

• Born in the 70’s – Still heavily used

• Data is organized into relations (in SQL: tables)

• Each relation is an unordered collection of tuples (rows)

V.Marangozova LSDM 2023-2024 11

• Separate the data from the code
• High-level language

• Space for optimization strategies

• Powerful query language
• Clean semantics

• Operations on sets

• Support for transactions

V.Marangozova LSDM 2023-2024 12

Limitations of Relational Databases

• Performance and scalability
• Difficult to partition the data (in general run on a single server)

• Need to scale up to improve performance

• Lack of flexibility
• Will to easily change the schema

• Need to express different relations

• Not all data are well structured

• Few open source solutions

• Mismatch between the relational model and object-oriented
programming model

V.Marangozova LSDM 2023-2024 13

Figure by M. Kleppmann

V.Marangozova LSDM 2023-2024 14

Figure by M. Kleppmann

V.Marangozova LSDM 2023-2024 15

What is NoSQL?

• A hashtag
• NoSQL approaches were existing before the name became famous •

• No SQL

• New SQL

• Not only SQL
• Relational databases will continue to exist alongside non-relational datastores

V.Marangozova LSDM 2023-2024 16

Difference with relational databases

• Properties =
guarantees

• Data models =
data structure

• Underlying architecture =
implementation and performance

V.Marangozova LSDM 2023-2024 17

• The concept of transaction
• Groups several read and write operations into a

logical unit

• A group of reads and writes are executed as one
operation:
• The entire transaction succeeds (commit)

• or the entire transaction fails (abort, rollback)

• If a transaction fails,
the application can safely retry

V.Marangozova LSDM 2023-2024 18

V.Marangozova LSDM 2023-2024 19

• Crashes may occur at any time
• On the database side

• On the application side

• The network might not be reliable

• Several clients may write to the database at the same time

V.Marangozova LSDM 2023-2024 20

V.Marangozova LSDM 2023-2024 21

• Having such properties make the
life of developers easy, but:
• ACID properties are not the same in

all databases

• It is not even the same in all SQL
databases

• NoSQL solutions tend to provide
weaker safety guarantees
• To have better performance,

scalability, etc.

Description

• A transactions succeeds completely or fails completely
• If a single operation in a transaction fails, the whole transaction should fail

• If a transaction fails, the database is left unchanged

• It should be able to deal with any faults in the middle of a transaction

• If a transaction fails, a client can safely retry

In the NoSQL context:

• Atomicity is still ensured

V.Marangozova LSDM 2023-2024 22

Description

• Ensures that the transaction brings the database from a valid state to
another valid state
• All university staff is paid at the end of month

• It is a property of the application, not of the database

In the NoSQL context:

• Consistency is (often) not discussed

V.Marangozova LSDM 2023-2024 23

Description

• Ensures that once a transaction has committed successfully, data will not
be lost
• Even if a server crashes (flush to a storage device, replication)

In the NoSQL context:

• Durability is also ensured

V.Marangozova LSDM 2023-2024 24

Description

• Concurrently executed transactions are isolated from each other
• We need to deal with concurrent transactions that access the same data

• Serializability
• High level of isolation where each transaction executes as if it was the only

transaction applied on the database
• As if the transactions are applied serially, one after the other

• Many SQL solutions provide a lower level of isolation

In the NoSQL context:

• Let us have a look at the CAP theorem

V.Marangozova LSDM 2023-2024 25

3 properties of databases

Consistency

• What guarantees do we have on the value returned by a read
operation?
• It strongly relates to Isolation in ACID (and not to consistency)

Availability

• The system should always accept updates

Partition tolerance

• The system should be able to deal with a partitioning of the network

V.Marangozova LSDM 2023-2024 26

It is impossible to have a system that provides Consistency,
Availability, and Partition tolerance at the same time.

Partitionning (failures) are inevitable in a large scale distributed setting =>
need to choose between availability and consistency

In the CAP theorem:

• Consistency is meant as linearizability (the strongest consistency
guarantee)

• Availability is meant as total availability

In practice, different trade-offs can be provided

V.Marangozova LSDM 2023-2024 27

V.Marangozova LSDM 2023-2024 28

The main consequence

• No NoSQL database with strong Isolation

The othe ACID properties ?

• Atomicity
• Each side should ensure atomicity

• Durability
• Should never be compromised

V.Marangozova LSDM 2023-2024 29

• Data are stored as key-value pairs
• The value can be a data structure (eg, a list)

• In general, only support single-object
transactions
• In this case, key-value pairs

• Examples:
• Redis

• Voldemort

• Use case:
• Scalable cache for data

• Note that some solutions ensure durability by
writing data to disk

V.Marangozova LSDM 2023-2024 30

Image by J. Stolfi

• Data are organized in rows and columns (Tabular data store)
• The data are arranged based on the rows
• Column families are defined by users to improve performance
• Group related columns together

• Only support single-object transactions
• In this case, a row

• Examples:
• BigTable/HBase
• Cassandra

• Use case:
• Data with some structure with the goal of achieving scalability and high throughput
• Provide more complex lookup operations than KV stores

V.Marangozova LSDM 2023-2024 31

V.Marangozova LSDM 2023-2024 32

• Data are organized in Key-Document pairs
• A document is a nested structure with embedded metadata
• No definition of a global schema
• Popular formats: XML, JSON

• Only support single-object transactions
• In this case, a document or a field inside a document

• Examples:
• MongoDB
• CouchDB

• Use case:
• An alternative to relational databases for structured data
• Offer a richer set of operations compared to KV stores:

• Update, Find, etc.

V.Marangozova LSDM 2023-2024 33

V.Marangozova LSDM 2023-2024 34

V.Marangozova LSDM 2023-2024 35

• Rich data format
• Query language as paSern matching

• Limited scalability : replicacation to scale reads, writes need to be done to every
replica

V.Marangozova LSDM 2023-2024 36

• Many-to-one
• Example: Many people went to the same university

• One-to-Many: An item may have several entries of the same kind
• Example: One person may have had several positions during her career

• Document DB allow storing such information easily and allow simple read
operations

• Many-to-Many
• Example: Several persons may have worked in the same company.

• Graph DB

V.Marangozova LSDM 2023-2024 37

Relational vs Document DB

Relational databases use a foreign key
• Consistency and low memory footprint (normalization)

• Easy updates and support for joins
• Difficult to scale

Document databases duplicate data

• Efficient read operations
• Easy to scale

• Higher memory footprint and updates are more difficult (risk of consistency
issues)
• Transactions on multiple objects could be very useful in this case

• Join operations have to be implement by the application

V.Marangozova LSDM 2023-2024 38

• Column family data store

• Data storage system used by many Google services: Youtube,Google
maps, Gmail, etc.
• Paper published by Google in 2006 (F. Chang et al)

• Now available as a service on Google Cloud

• Many ideas reused in other NoSQL databases

V.Marangozova LSDM 2023-2024 39

• A system that can stores very large amount of data
• TB or PB of data
• A very large number of entries
• Small entries (each entry is an array of bytes)

• A simple data model
• Key-value pairs (A key identifies a row)
• Multi-dimensional data
• Sparse data
• Data are associated with timestamps

• Works at very large scale
• Thousands of machines
• Millions of users

V.Marangozova LSDM 2023-2024 40

• Rows are identified by keys (arbitrary strings)
• Modifications on one row are atomic

• Rows are maintained in lexicographic order

• Columns are grouped in columns families
• Columns can be sparse

• Clients can ask to retrieve a column family for one row

• Each cell can contain multiple versions indexed by a timestamp
• Assigned by BigTable or by the client

• Most recent versions are accessed first

• GC politics: Keep last n versions or Keep all new-enough versions

V.Marangozova LSDM 2023-2024 41

V.Marangozova LSDM 2023-2024 42

• A master
• Assign tablets to severs

• With the help of a locking service

• Tablet servers
• Store the tables (divided in tablets)

• Process client requests

• Tablets
• Stored as SSTables (Sorted string tables)

• Stored in the Google File System for durability

V.Marangozova LSDM 2023-2024 43

V.Marangozova LSDM 2023-2024 44

• Data stored in memory (Memtable)
• Any update is written to a commit log on GFS for durability

• The log is shared between all hosted tablets

• Periodic writes to disk
• When the Memtable becomes too big:

• Copied as a new SSTable to GFS

• Multiple SSTables are created if locality groups are defined (based on column families)

• Reduces the memory footprint and reduces the amount of work to do during recovery

• SSTables are immutable (no problem of concurrency control)

V.Marangozova LSDM 2023-2024 45

• The state of the tablet = the Memtable + all SSTables
• A merged view needs to be created

• The Memtable and the SSTables may contain delete operations

• Locality groups help improving the performance of read operations

• Major compaction
• When the number of SSTables becomes too big, merge them into a single SSTable

• Allow reclaiming resources for deleted data

• Improve the performance of read operations

V.Marangozova LSDM 2023-2024 46

• During a read operation, potentially several SSTables need to be read

• How to avoid reading all SSTables when not needed?
• Use of Bloom filters (1970 !)

• Data structure that allows us to know if a SStable contains an entry for a given key-
column pair

• Bloom filter
• Implements a membership function (is X in the set?)

• If the bloom filter answers no: it is guaranteed that X is not present

• If the bloom filter answers yes: the element is in the set with a high probability

• Good trade-off between accuracy and memory footprint

V.Marangozova LSDM 2023-2024 47

V.Marangozova LSDM 2023-2024 48

• Column family data store

• Paper published by Facebook in 2010 (A. Lakshman and P. Malik)
• Used for implementing search functionalities

• Released as open source

• Build on top of several ideas introduced by BigTable
• Warning: Many changes in the design have been made since the first version of

Cassandra

V.Marangozova LSDM 2023-2024 49

Ideas from DHT = Distributed Hash Tables

V.Marangozova LSDM 2023-2024 50

V.Marangozova LSDM 2023-2024 51

Lectures of Prof. Jussi Kangasharju,
http://www.cs.helsinki.fi/u/jakangas/

http://www.cs.helsinki.fi/u/jakangas/

Partitioning based on a hashed name space

• Data items are identified by keys

• Data are assigned to nodes based on a hash of the key

• Tries to avoid hot spots

Namespace represented as a ring

• Allows increasing incrementally the size of the system

• Each node is assigned a random identifier
• Defines the position of a node in the ring

• The nodes is responsible for all the keys in the range between its identifier and
the one of the previous node.

V.Marangozova LSDM 2023-2024 52

Limits : High risk of imbalance

• Some nodes may store more keys than others

• Nodes are not necessarily well distributed on
the ring, especially true with a low number of
nodes

Issues when nodes join or leave the system

• When a node joins, it gets part of the load of
its successor

• When a node leaves, all the corresponding
keys are assigned to the successor

V.Marangozova LSDM 2023-2024 53

Concept of virtual nodes

Assign multiple random positions
to each node

V.Marangozova LSDM 2023-2024 54

V.Marangozova LSDM 2023-2024 55

Items are replicated for fault tolerance.

• Simple strategy
• Place replicas on the next R nodes in the ring

• Topology-aware placement
• Iterate through the nodes clockwise until finding a node meeting the required

condition

• For example a node in a different rack

V.Marangozova LSDM 2023-2024 56

Replication is based on quorums

• A read/write request might be sent to a subset of the replicas
• To tolerate f faults, it has to be sent to f + 1 replicas

• Consistency
• The user can choose the level of consistency

• Trade-off between consistency and performance (and availability)

• Eventual consistency
• If an item is modified, readers will eventually see the new value

V.Marangozova LSDM 2023-2024 57

V.Marangozova LSDM 2023-2024 58

ONE (default level)

• The coordinator waits for one ack on write before answering the client

• The coordinator waits for one answer on read before answering the client

• Lowest level of consistency
• Reads might return stale values
• We will still read the most recent values in most cases

QUORUM

• The coordinator waits for a majority of acks on write before answering the client

• The coordinator waits for a majority of answers on read before answering the client

• High level of consistency
• At least one replica will return the most recent value

V.Marangozova LSDM 2023-2024 59

• Bigtable: A Distributed Storage System for Structured Data., F. Chang et
al., OSDI, 2006.

• Cassandra: a decentralized structured storage system ., A. Lakshman et
al., SIGOPS OS review, 2010.

• http://martin.kleppmann.com/2015/05/11/ please-stop-calling-
databases-cp-or-ap.html, M. Kleppmann, 2015.

• https://jvns.ca/blog/2016/11/19/ a-critique-of-the-cap-theorem/,
J. Evans, 2016.

V.Marangozova LSDM 2023-2024 60

