
Introduction to Kafka and Spark Streaming

Master M2 – Université Grenoble Alpes & Grenoble INP

2023

This lab is an introduction to Kafka and Spark Streaming. The lab assumes that you run on a
Linux machine similar to the ones available in the lab rooms of Ensimag. Some information about
accessing remotly to the machines of Ensimag is provided in appendix.

1 Apache Kafka

In this first part, we are going to execute basic operations with the Kafka message broker to un-
derstand how it works.

The documentation on Kafka is available here: https://kafka.apache.org/. It can be a
good idea to refresh your mind about the description that was made of Kafka during the lectures
by having a look at the corresponding slides.

Note that this first part of the lab is strongly inspired from the Kafka documentation. You can refer
to it when some explanations are unclear: https://kafka.apache.org/quickstart

1.1 Running a Kafka broker

Installation The first step to use Kafka is to download the archive including all binary files1 and
extracting this archive:

> wget https://archive.apache.org/dist/kafka/3.6.0/kafka_2.12-3.6.0.tgz
> tar zxvf kafka_2.12-3.6.0.tgz

Note that on some systems, simply using the tar command to extract the files from the archive
may not work. In this case, one can use the following commands instead:

> gunzip -dc kafka_2.12-3.6.0.tgz | tar xf -

At this point, Kafka is ready to be used.

1The version 2.7.0 of Kafka is not the most version but we recommend it for this lab, as all proposed exercises have
been heavily tested with this version.

1

https://kafka.apache.org/
https://kafka.apache.org/quickstart


Starting a Zookeeper service Kafka relies on Zookeeper to reliably store information about the
configuration of a Kafka Cluster, about the messages that have been delivered to clients, etc.

In a realistic setup, the Zookeeper service should be run on multiple nodes, that are not the ones
where Kafka is going to execute. However, in this lab, we are going to simply make some tests
with a local deployment. As such, we are going to run a single-node Zookeeper instance, as
follows:

> bin/zookeeper-server-start.sh config/zookeeper.properties

Starting the Kafka broker In the first step of the lab, we are going to work with a single Kafka
broker. To launch the broker, run in a new terminal:

> bin/kafka-server-start.sh config/server.properties

1.2 First operations with Kafka

Messages in Kafka are published in a topic. The following command can be used to obtain the list
of topics that already exist in a Kafka cluster:

> bin/kafka-topics.sh --list --bootstrap-server localhost:9092

At the beginning, you should observe that no topics exist. Hence we are going to create one
(replace [MY_TOPIC_NAME] with the name you like):

> bin/kafka-topics.sh --create --bootstrap-server localhost:9092 \
--replication-factor 1 --partitions 1 \
--topic [MY_TOPIC_NAME]

You can then verify that this new topic exists.

It is now time to publish the first messages in the topic. To publish messages, we are going to use
the Kafka client console. To start the console, run:

> bin/kafka-console-producer.sh --broker-list localhost:9092 \
--topic [MY_TOPIC_NAME]

From this point on, you can start publishing messages on the topic by entering messages in the
console. However, the setup is not yet very interesting as there are no processes reading the
messages published on the topic.

To read the messages published on the topic, we are going to start a consumer console:

> bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 \
--topic [MY_TOPIC_NAME] --from-beginning

Note that since we used the flag -from-beginning, the consumer receives all the messages
published since the topic has been created. To create a client that only receives messages published
after it connected, simply remove this flag.

2



1.3 Understanding the semantic of operations with Kafka

We list below a set of questions that you should try to answer by running new tests with Kafka.

• What happens if the Kafka server crashes and needs to be restarted? Is it possible for clients
that connect after the server has restarted to retrieve the messages that were published before
the crash? (Try to explain)

– To simulate a crash of the server, we are simply going to send a signal to the server
process by typing CTRL+C in the corresponding terminal (i.e., sending a SIGINT signal
to the process)2.

• What happens if multiple consumers are registered to the same topic? When a message is
published, which consumer receives the messages?

• What happens if multiple producers produce messages on the same topic? What is received
by the consumers?

• During the lecture on Kafka, we introduced the notion of consumer group. To associate a
consumer to a specific consumer group, the following comment should be used:

> bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 \
--topic [MY_TOPIC_NAME] \
--from-beginning \
--group [MY_GROUP_NAME]

What happens on message publication when two consumers belonging to the same group
are registered to the same topic? (try to explain)

To run this test, it is better to create a new topic.

• During the lecture on Kafka, we also introduced the notion of partitions. In the first topic
we created, there was only one partition. Create a new topic that is divided into 2 partitions3.

Assuming that the new topic you created is called [MY_PARTITIONED_TOPIC], you can
verify that your new topic includes two partitions using the following command:

> bin/kafka-topics.sh --describe --bootstrap-server localhost:9092 \
--topic [MY_PARTITIONED_TOPIC]

What happens when new messages are published on this topic if 2 consumers belonging to
the same group are registered to this topic? (try to explain)

• Same question as before but this time with 3 clients?
2Students familiar with UNIX systems can try obtaining the PID of the server process using ps aux | grep

server.properties, and can then use kill -9 to kill the corresponding process (i.e., sending a SIGINT signal
to the process)

3Only the value of the -partitions option needs to be changed in the command to create a topic

3



1.4 Setting up a Kafka cluster

Until now we have worked with a single Kafka broker. In practice, a Kafka cluster composed
of multiple Kafka brokers is deployed both to improve the performance and the reliability of the
system. We are going to create our own Kafka cluster composed of 3 brokers on a single machine.

Cleaning To avoid clutter, we suggest to start this new step from a clean environment. To this
end:

• Stop the existing Kafka broker by sending a SIGINT signal to the process.

• Stop the Zookeeper service by sending a SIGINT signal to the process. (note that it is im-
portant to stop the Kafka broker first)

• Delete the logs of Zookeeper and Kafka using the following command:

> rm -rf /tmp/zookeeper/* /tmp/kafka-logs/*

Starting a Kafka cluster To create a Kafka cluster, we need to start multiple brokers, each with
a different broker identifier. To this end, we should create 3 new configurations files, on the same
model as the one we used for the first broker (file config/server.properties).

More specifically, you need to create 3 new files that are copies of the file
config/server.properties. In each new file, 3 configuration options need to be up-
dated (broker.id, listeners, log.dirs) so that the values are different in each file. Here is
the summary of the modifications for file file config/server-1.properties:

• broker.id=1

• listeners=PLAINTEXT://localhost:9092 (only the port number should be changed
in the other files, for instance to 9093 and 9094).

• log.dirs=/tmp/kafka-logs1

Once the new configuration files are created, you can:

• Restart the Zookeeper service using the instructions presented in Section 1.1.

• Start the three brokers in new terminals:

> bin/kafka-server-start.sh config/server-1.properties
> bin/kafka-server-start.sh config/server-2.properties
> bin/kafka-server-start.sh config/server-3.properties

4



Creating a replicated topic Once the Kafka cluster is created, new topics can be created, now
with a replication degree of 3:

> bin/kafka-topics.sh --create --bootstrap-server localhost:9092 \
--replication-factor 3 --partitions 1 \
--topic [MY_REPLICATED_TOPIC]

You can observe the state of the new topic using the same command as introduced earlier:

> bin/kafka-topics.sh --describe --bootstrap-server localhost:9092 \
--topic [MY_REPLICATED_TOPIC]

Some questions related to the Kafka cluster

• Explain the output of the command that describes the replicated topic

• Can a producer connect to any broker to publish a message on the topic? (To change the
broker to connect to, simply change the port number in the url of the -bootstrap-server
option)

• Create 3 consumers, each connected to a different broker. What happens when a message is
published on the topic?

• Kill the broker that plays the role of leader for the replicated topic.

– Can we still publish and consume messages on the topic?

– Observe the new state of the replicated topic and explain what happened.

• Restart the killed broker and observe the state of the replicated topic. Explain.

• Create a new topic with a replication degree of 3 and 2 partitions. Register 3 clients belonging
to the same consumer group to this topic.

– Observe the state of the new replicated topic and explain the difference with the previ-
ous case.

– What happens when a producer publishes messages on the topic?

2 Spark Streaming

important notice: the following sections give instructions for older versions of the Spark streaming and
Kafka frameworks. You will need to reingeneer the lab to adapt it to the current versions or the versions you
have installed. Another possibility is to install the old versions.

In this part, we are going to execute our first Spark Streaming application. The code of the ap-
plication is provided to you in the archive published here: https://tropars.github.io/
teaching/#data-management-in-large-scale-distributed-systems.

5

https://tropars.github.io/teaching/#data-management-in-large-scale-distributed-systems
https://tropars.github.io/teaching/#data-management-in-large-scale-distributed-systems


The provided Spark Streaming application is a simple version of the famous Word Count appli-
cation adapted to the streaming context4. The application counts the occurrences of words inside
each micro-batch.

Installing Spark This lab is based on a recent stable version of Spark (3.0.1)5 and works with
Scala 2.12. Furthermore the sbt built manager is used for compilation.

If Spark v3.0.1 is not available on your machine, you should download and install it using the
following commands in your working directory:

> wget \
https://archive.apache.org/dist/spark/spark-3.0.1/spark-3.0.1-bin-hadoop2.7.tgz

> tar zxvf spark-3.0.1-bin-hadoop2.7.tgz

Compiling the Spark Streaming application To compile the Spark Streaming application,
move into the directory code/stream_app of the provided material and run:

> sbt package

Take the time to read and understand the provided source code of the application, that is accessible
in the file code/stream_app/src/main/scala/NetworkWordCount.scala.

Running the application To test the application, we are going to use the network utility
Netcat, that is going to allow us to send messages to the Spark Streaming application through
the console. To start the Netcat server, and make it listen for new connections on port 9999, run
in a dedicated terminal:

> nc -lk 9999

To start the Spark Streaming application, run:

> [SPARK_DIRECTORY]/bin/spark-submit --master local[*] \
./target/scala-2.12/stream-word-count_2.12-1.0.jar localhost 9999

Some observations To easily observe what is happening in the Spark Streaming application,
we suggest you to modify the application to increase the batch interval to 10 seconds.

After restarting your application, you can observe its state by connecting to the graphical user
interface of Spark at the following url: http://localhost:4040. We are more specifically
interested in the Streaming page.

You can observe that the Streaming statistics of Spark report 4 main metrics (Input rate, Scheduling
delay, Processing time, Total delay):

4The original version of the code can be found in the Spark repository: https://github.com/apache/spark/
tree/branch-2.4/examples/src/main/scala/org/apache/spark/examples/streaming. It corresponds
to the tutorial example given in the documentation of Spark Streaming: https://spark.apache.org/docs/
latest/streaming-programming-guide.html#a-quick-example

5It seems that the lab also works with the version of Spark used for the previous labs (3.3.0).

6

http://localhost:4040
https://github.com/apache/spark/tree/branch-2.4/examples/src/main/scala/org/apache/spark/examples/streaming
https://github.com/apache/spark/tree/branch-2.4/examples/src/main/scala/org/apache/spark/examples/streaming
https://spark.apache.org/docs/latest/streaming-programming-guide.html#a-quick-example
https://spark.apache.org/docs/latest/streaming-programming-guide.html#a-quick-example


• Observe how these metrics evolve depending on the input data.

• What information does each of these metrics provide us?

3 Kafka and Spark Streaming

Now that we have managed to have a first streaming application running, we are going to build a
Spark Streaming application that reads data from a Kafka broker.

Running the provided application We provide you with another version of the streaming Word
Count application, that is available in the directory code/kafka_stream_app:

• Compile the new application using sbt

• Start a Kafka broker and create a new topic

• Start the new Spark application using the following command:

> [SPARK_DIRECTORY]/bin/spark-submit \
--packages org.apache.spark:spark-streaming-kafka-0-10_2.12:3.0.1 \
--master local[*] ./target/scala-2.12/kafka-stream-app_2.12-1.0.jar \
localhost:9092 [CONSUMER_GROUP] [KAFKA_TOPIC]

Modifying the Word Count application: displaying trending words As a last step for this lab,
we suggest you to modify the Word Count application to create an application that displays the
most frequent words over hopping windows. To this end, you need to:

1. Aggregate the data received from the Kafka broker in overlapping windows. We want to
create a new 40-second window every 10 seconds.

2. Sort the words appearing in each window in descending order according to their number of
occurrence.

Most information regarding the mechanisms required to implement this applica-
tion are available on this web page: https://spark.apache.org/docs/latest/
streaming-programming-guide.html#transformations-on-dstreams.

7

https://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams
https://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams

	Apache Kafka
	Running a Kafka broker 
	First operations with Kafka
	Understanding the semantic of operations with Kafka
	Setting up a Kafka cluster

	Spark Streaming
	Kafka and Spark Streaming

