Large-Scale Data Management and Distributed Systems

I. Introduction

Vania Marangozova <u>Vania.Marangozova@imag.fr</u> <u>https://vmarangozova.github.io/</u>

2024-2025

About me

- CV
 - Professor in CS
 - Research and Teaching position since 2004
- Research
 - Resource Optimisation in large-scale Distributed Platformes clouds
 - Microservices: Energy consumption and scaling

Organization of the course

• 2 complementary topics

- Distributed algorithms (T. Ropars) 18 hours
- Data management (V. Marangozova) 18 hours
- Data Management
 - 12 hours of lectures
 - 6 hours of practical sessions
- Grading
 - Graded Lab (25% of the final grade)
 - Written exam (75% of the final grade)

Covered Topics

- The challenges of Big Data and distributed data processing
- Processing large amount of data
 - Batch and stream processing systems
- Distributed (NoSQL) databases
- Underlying Design Principles

This lecture

- Introduction to the Big Data challenges
- Challenges of distributed computing
- Introduction to Cloud Computing
- Scalability techniques

The Challenges of Big Data

The Data Deluge

- All activities become digitalized
- Various sources of data
 - Sensors
 - Social media
 - Scientific experiments
 - Industry activity
 - ...

Some Numbers

- Every day we create 328.77 million terabytes
 - This year we will produce 13 times more than what we produced in 2013
- COVID has brought +56% of data explosion (2020)
- ChatGPT gets x1.5 Million+ queries daily
 - 2023 Its monthly cost is estimated at \$3 million
 - 2024 its dayly cost is around \$700,000 (\$21 million)
 - https://www.demandsage.com/chatgpt-statistics/
- ~99,000 Google search queries/second

Global Data Generated Annually

https://explodingtopics.com/blog/data-generated-per-day Consulted 15/11/2023

LSDM 2024-2025

How big is xxxByte?

- <u>https://highscalability.com/how-big-is-a-petabyte-exabyte-zettabyte-or-a-yottabyte/</u> (14/11/2024)
 - x10⁰ 10 bytes: A single word
 - x10³ 2 Kilobytes: A Typewritten page
 - x10⁶ 5 Megabytes: The complete works of Shakespeare / 30 sec of TV-quality video
 - x10⁹ 1 Gigabyte: A pickup truck filled with paper
 - x10¹² 2 Terabytes: An academic research library
 - x10¹⁵ 1 Petabyte: 5 years of EOS data (at 46 mbps)
 - x10¹⁸ 5 Exabytes: All words ever spoken by human beings.
 - x10^{21 -} Research from the <u>University of California, San Diego</u> reports that in 2008, Americans consumed 3.6 zettabytes of information.

Numbers continued...

- Video streaming accounted for nearly half of all downstream internet traffic
 - <u>https://bloggingwizard.com/live-streaming-statistics/</u>
- The number of devices connected to IP networks is more than three times the global population
 - Statista & CISCO report
- 14 billion connected IoT devices
 - <u>https://explodingtopics.com/blog/iot-stats</u>
- A new website is built every 3 seconds
 - <u>https://www.forbes.com/advisor/business/softwa</u> <u>re/website-statistics/</u>

GLOBAL APPLICATION CATEGORY TRAFFIC SHARE

	Rank Change	Category	Downstream	Upstream
1	-	Video Streaming	48.9%	19.4%
2	-	Social Networking	19.3%	16.6%
3	2	Web	13.1%	23.1%
4	-1	Messaging	6.7%	20.4%
5	-	Gaming	4.3%	1.9%
6	-2	Marketplace	4.1%	1.2%
7	2	File Sharing	1.3%	6.6%
8	-1	Cloud	1.1%	6.7%
9	-3	VPN and Security	0.9%	3.9%
10	-	Audio	0.2%	0.2%

40 TB of data every second during an experiment at the Large Hadron Collider

LSDM 2024-2025

Hardware Capacity

- To produce data
- To store data
 - All the music of the world stored for ~ 500
 - Amazon EC2 instances: RAM up to 24TB, disk x10x16TB

To compute on data

- Google data-centers: more than 2.5M servers (2016), secret, "x10x1000" servers
- Amazon capacity increases each day, the offer changes each year
- Not to forget generative AI which is a disruptive technology

Huge opportunities for storing and processing data

Hardware Capacity

- To produce data
- To store data
 - All the music of the world stored for ~ 500
 - Amazon EC2 instances: RAM up to 24TB, disk x10x16TB

To compute on data

- Google data-centers: more than 2.5M servers (2016), secret, "x10x1000" servers
- Amazon capacity increases each day, the offer changes each year
- Not to forget generative AI which is a disruptive technology

Huge opportunities for storing and processing data

Huge opportunities for rethinking the cost of data

Big data challenges: The V's

Source : Big Data for Modern Industry: Challenges and Trends

https://ieeexplore.ieee.org/document/7067026

Big data challenges: The V's

- Volume: Amount of data generated
- Variety: all kinds of data are generated (text, image, voice, time series, etc.)
- Velocity: Rate at which data are produced and should be processed
- Veracity: Noise/anomalies in data, truthfulness
- Value: How do we extract/learn valuable knowledge from the data

In this course

- Volume, Velocity
 - will see Variety

Questions to be answered:

- How to build a system and algorithms that can process huge amount of data?
- How to build a system and algorithms that can process data in a timely manner?
- (Bonus questions) How to build software that can deal with the variety of data?

Distributed and Parallel Systems

Motivation

- Big data = big computation
 - Needs quite a lot of resources !
- Distribution: when it does not fit in a single machine
- Paralellization: when the computation takes a lot of time
- Note that:
 - Different strategies can be used to leverage these resources
 - Using large amount of resources **presents new challenges**

Increasing the processing power and the storage capacity

- Goals
 - Increasing the amount of data that can be processed (weak scaling)
 - Decreasing the time needed to process a given amount of data (strong scaling)
- Two solutions
 - Scaling up
 - Scaling out

Vertical scaling (scaling up)

- Idea: increase the processing power by adding resources to existing nodes
 - Upgrade the processor (more cores, higher frequency)
 - Increase memory volume
 - Increase storage volume

- Pros and Cons
 - © Performance improvement without modifying the application
 - 🙁 Limited scalability (capabilities of the hardware, cf The end of Moore's law)
 - ⊗ Expensive (non linear costs)

Horizontal scaling (scaling out)

- Idea: increase the processing power by adding more nodes to the system
 - Cluster of commodity servers

- Pros and Cons
 - [©] Often requires modifying applications
 - © Less expensive (nodes can be turned off when not needed)
 - ③ Infinite scalability

The solution studied in this course

Large Scale Infrastructures

Figure: Google Data-center

Figure: Amazon Data-center

Figure: Barcelona Supercomputing Center

LSDM 2024-2025

Distributed Computing: Definition

"A system in which hardware or software components located at networked computers communicate and coordinate their actions only by passing messages"

G.Coulouris, J. Dollimore, T. Kindberg.

Distributed Systems: Concepts and Design (4th Edition).

- Network: latency & failures
- No global memory = no global state: each entity has its own local memory
- Coordination
- Message passing
- Each entity of the system is called a **node**.

Distributed computing: Challenges

- Scalability
 - How to take advantage of a large number of distributed resources?
- Performance
 - How to take full advantage of the available resources?
 - Moving data is costly: how to maximize the ratio between computation and communication?
 - How to ensure that the latency of requests processing remains below some upper bound?

Distributed computing: Challenges

• Fault tolerance

- The more resources, the higher the probability of failure
- MTBF (Mean Time Between Failures)
 - MTBF of one server = 3 years
 - MTBF of 1000 servers ~ 19 hours (beware: over-simplified computation)
- How to ensure computation completion?
- How to ensure that results are correct?
- Programmability
 - How to provide programming models that hide the complexity of distributed computing? (while remaining efficient)
 - What high level services should be made available to ease life of programmers?

The Problem of Distributed Computing

...the same as parallel computing... allows **great** things but creates **huge** problems!

You can have a second computer once you've shown you know how to use the first one. (P. Braham)

- Horizontal scaling is very popular.
 - But not always the most efficient solution (both in time and cost)
- Examples
 - Processing a few 10s of GB of data is often more efficient on a single machine that on a cluster of machines
 - Sometimes a single threaded program outperforms a cluster of machines (F. McSherry et al. "Scalability? But at what COST!". 2015., <u>http://www.frankmcsherry.org/graph/scalability/cost/2015/01/15/COST.html</u>)

Cloud Computing

LSDM 2024-2025

Cloud Computing Definitions

Business Perspective

UCBerkeley R&DLabs:
"Cloud computing has the following characteristics:
(1) The illusion of infinite computing resources...
(2) The elimination of an up-front commitment by Cloud users...
(3) The ability to pay for use...as needed..."

Cloud Computing Definitions

Technical Perspective

NIST (National Institute of Standards and Technology)

- **On-demand self-service.** A consumer can ask for more resources: computation, network, storage, ...
- Broad network access.
- **Resource pooling:** resources (virtual and physical) are dynamically assigned and serve multiple consumers
- Rapid elasticity. Capabilities can be elastically provisioned and released
- Measured service. "pay as you go"

Pros and Cons

 \odot Pay only for the resources you use

© Get access to large amount of resources

- Amazon Web Services features millions of servers
- 😕 Volatility
 - Low control on the resources
 - Example: Access to resources based on bidding
 - See "The Netflix Simian Army" (<u>https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116</u>)
- ⁽²⁾ Performance variability
 - Physical resources shared with other users

Architecture of a Data Center

31

Architecture of a Data Center

- A shared-nothing architecture
 - Horizontal scaling
 - No specific hardware
- A hierarchical infrastructure
 - Resources clustered in racks
 - Communication inside a rack is more efficient than between racks
 - Resources can even be geographically distributed over several datacenters

Architecture of a Data Center

- A shared-nothing architecture
 - Horizontal scaling
 - No specific hardware
- A hierarchical infrastructure
 - Resources clustered in racks
 - Communication inside a rack is more efficient than between racks
 - Resources can even be geographically distributed over several datacenters

The energy cost of different datacenters is different

Communication

Shared Memory

- Entities share a global memory
- Communication by reading and writing to the globally shared memory
- Communication between threads inside one node

- Entities have their own private memory
- Communication by sending/receiving messages over a network
- Communication between nodes

How to Distribute Data ?

Partitioning

- Splitting the data into partitions
- Partitions are assigned to different nodes
- Main goal: Performance
 - Partitions can be processed in parallel

Replication

- Several nodes host a copy of the data
- Main goal: Fault tolerance
 - No data lost if one node crashes

Replication

• Purposes

- Continuing to serve requests when parts of the system fail
- Keep data close to the users
- Having multiple servers able to answer read requests
- Challenges
 - How to handle operations that modify data? (write operations)
 - Consistency (Consensus in a distributed system is a very difficult problem)
 - Performance

Replication: read

Replication: read the closest

Replication: read the closest replica

Replication: if the closest crashes

Replication: parallel reads

LSDM 2024-2025

Replication: write

LSDM 2024-2025

Replication: parallel writes

Replication: parallel writes

Partitioning

- Purposes
 - Performance
 - Distributing the load over several nodes
- Challenges
 - How to partition the data?
 - Evenly distributed load (even for skewed workloads)
 - Range queries

Partitioning

Partitioning: parallel reads

Partitioning: parallel writes

Partitioning: reading the whole data

Partitioning+Replication

BigData Runtime

• Middleware

Replication Partitioning Distribution Fault Tolerance Monitoring Cluster Management Job Management Scaling

LSDM 2024-2025