Large-Scale Data Management and
Distributed Systems

VI. Column-oriented Storage

Vania Marangozova

Vania.Marangozova@imag.fr

2023-2024

mailto:Vania.Marangozova@imag.fr

References

. : : . : Designing
* Designing Data-Intensive Applications by Martin Kleppmann Data-Intensive
» Chapter 3: Column-oriented storage Ap catlons

» Chapter 4: Formats for Encoding Data

* Presentation of Prof Michael Stonebraker @EPFL (2013)
(https://slideshot.epfl.ch/play/suri_stonebraker):
Everything You Learned in Your DBMS Class is Wrong

In this lecture

* Transacton-based systems vs Data Warehouses

* Principles of column-oriented storage

* Representation of large data on disks

Transaction-based Systems

* Early days: write to a database = business transaction

* Sell at Walmart: Client xxx bought yyy for zzz on ttt in store sss

* Applications are interactive

* |Interaction with the end users

* Online Transaction Processing Systems (OLTP)

* Atransaction
* Involves a sequence of reads/updates of a small number of records

- Requires high availability and low latency

Row-based Traditional OLTP

* Typically using the

relational model Table
* Data is organized in Country Product
tables which contain Row 1

rows Row 2
Row 3

Row 4

* One row = une piece of
information containing
different facts/attributes

Traditionadl
Row-Based Storage

* Persistent storage is divised in blocks
* Each block contains several rows

* When a row needs to be accessed,
the whole row (the whole block !) needs
to be loaded into memory

* Speeding up with indexes
* indexes are application specific, depending
on the type of queries

Table

Country Product

Row 1
Row 2
Row 3
Row 4

Row Store

Row 1

Row 2

Row 3

Row 4

A Detour on RDBMS Indexes

* Anindexis an additional data

structure
« does not change the contents of the DB key byteoffset| In-memory hash map
. 123456 0
* impacts performance: overhead on a 42%1
write operation: do the write and Log-structured file on disk
date the index (each box is one byte)
1P [1]2]3]e]s]e], [t["[n]a]m]e]"]: ["[L]c]n]a]o]a]], ["[a]t]t]=]a]
* need to do the write very fast . <l kL . , =
: : clt[ifo]n]s["[:[T]"[B]i]g] [B]e[n]"].["][r]o]n]a]o]a] JE]y]e
* nothing compares to a sequential append to 30 ¥ 20 50
a file as random access is suicidal D w[ef2], ([[n[a[m]e["]: ["[s[a]a] [F[z[a[n]c]i]s]c]o]"]
60 70 80
* The simplestindex = hash index [Talt]t]z]a]ce]i]o]a]s]"]: [1]]6]o[1]d]e]a] Jc]a]t]e] |o
<key, value> zi]d[g[e]" 1]} wn
* in memory structure

Figure 3-1. Storing a log of key-value pairs in a CSV-like format, indexed with an in-
memory hash map. Designing

« good for frequent updates of values Data ntensive
Applications

 key -> file offset

[[]
o ptl m Ize Data file segment
mew:1078 purr:2103 | purr:2104 | mew:1079 | mew:1080 | mew:1081 |
the storage - |
[J

@ Compaction process

Compacted segment

[
¢ Com paCtlon > yawn:511 - mew: 1082 purr: 2108

purr: 2105 purr: 2106 lpurr:2107 ‘yawn:SH {purr:2108 ‘mew:1082 ‘

* break the log into segments of a
certain size

Data file segment 1

‘ Close a Segment ﬂle When It reaCheS a ’mew:1078 purr: 2103 ‘purr:2104 ‘mew:1079 ‘mew:1080 ‘mew:1081
ce rtaln sSize a ’ purr: 2105 purr: 2106 ‘ purr: 2107 ‘ yawn: 511 ‘ purr: 2108 ‘ mew: 1082
* make subsequent writes to a new Data file segment 2
segment file] purr:2109 | purr:2110 \ mew: 1083 [scratch: 252 ‘ mew: 1084 ‘ mew: 1085
J ’ purr: 2111 mew: 1086 ‘ purr: 2112 ’ purr: 2113 ‘ mew: 1087 ‘ purr:2114
° compact segments

+) Compaction and merging process

* as segments become smaller, merge etgediseqmentsA aqd?

seve ral Segments together ’ yawn: 511 scratch: 252 ‘ mew: 1087 ’ purr: 2114 ‘
o Designing
« segments are never modified e

SSTables Indexes

* Hash-based indexes' limitations

* must fit into memory: problem with a great number of keys

* range queries are not efficient: need to query key by key

* SSTables = Sorted String Table
+ <key, value> sequence is sorted by key
* merging segments is simple and efficient: mergesort

* ne need to keep an index of all the keys in memory: sparce index is enough
* segments may by compressed

Construction of SSTables

* Use (balanced) tree data structure for representation in memory
* thisin memory index is called memtable

1. write => update memtable
2. size memtable > threshold => write it to dosk as SSTable
3. read => search in memtable, then in most recent segment, etc

4. periodically do compaction

* To face crashes, maintain an additional append log of recent writes

 aseparate log on disk to which every write is immediately appended (as in the hash)

=> Log-Structured Merge-Tree (LSM-Tree)

Back to Data Management Systems

* Busienesses have not only their OLTP systems, but also maintain
Data Warehouses

Data Warehouse = data system used for data analytics
* How much have the PPP store sold this month ?

* Which product is the most popular ?

OLAP = Online Analytic Processing Systems (OLAP)

* Access pattern

» Scan over a large number of records

« Compute statistics (make dashboards, ... business intelligence... data analyst)

Why not execute anayltics queries
on the OLTP directly »

* Performance

* Disturb the OLTP requests
* Not adapted to serve OLAP requests

* Complexity
* An entreprise might have multiple OLTP systems

Content of Data Warehouses

< % CUABE Warehouse Truck
* Extract from the OLTP S l l WIS l i
e Tra N SfO rm t h e d ata g Ecommerce site Stock-keeping app Vehicle route planner
o
: =~ | : : 4
¢ LO d d INto t h e O LA P é . Sales . Inventory Geo
6 DB DB
* Contains a read-only eamat\i] B
coO py Of t h e d ata g transform transform transform
T
of all the OLTP systems 2 joad\ load / load
& '
in the company g Gomo . s Data warehouse

Figure 3-8. Simplified outline of ETL into a data warehouse.

Differences between OLTP & OLAP

Table 3-1. Comparing characteristics of transaction processing versus analytic systems

Transaction processing systems (OLTP) Analytic systems (OLAP)
Main read pattem Small number of records per query, fetched by key ~ Aggregate over large number of records
Main write pattern Random-access, low-latency writes from user input ~ Bulk import (ETL) or event stream
Primarily used by End user/customer, via web application Internal analyst, for decision support
What data represents Latest state of data (current point in time) History of events that happened over time
Dataset size Gigabytes to terabytes Terabytes to petabytes

Designing
Data-Intensive
Applications

Data Warehouse Data Model

dim_store table

* Star or Snowflake model

* A central table = fact table

« usually contains data with
x100 attributes

* Example : purchase, date, client, ...

* Dimension tables

* giving more information on some
"dimensions" of the facts

* Example : store table

dim_product table

product_sk sku descrlpﬂ;on brand category store_sk stﬂ city
30 |OKka012 | Bgfanas) Freshmax | Fresh fruit 1 WA [\ seattle
31 - KA9511 Fku food) Aquatech | Pet supplies 2 \ CA ;Ln Francisco
32 '\‘ABIZBA Crom(Dealicious Bakery "3 / Palo Alto
fact_sales tQ M
date_key | product_sk) store_sk /pmMoan customg#sk | quantity | net_price | discount_price
140102 ne—] 3] Ny ULL 1 2.49 249
140102 69 5 regm 3 14.99 9.99
140102 74 3 A Y wie | 449 3.89
140102 33 8 L 35 4 099 099

dim_date table

%\customer table

date_key | year weekday | is_holiday custome_sk nidam_of_blrﬂ\
\ 140101 [2014f jan [\ 1 | wed yes \ 190 Walice |)979-03-29
140102 {2014 Ngan / 2 | thu no \ o1 | seb | /1961-09-02
140103 | 2014 | jan 3 fri no 192 Cecil 1991-12-13
dim_promotion table
promotion_sk name ad_type | coupon_type
18 NewYear‘leA) Poster NULL
I~ 19 Aquarium M_//Dlrect mail Leaflet
20 Coffee & cake bundle | In-store sign NULL

Typical Data Warehouse Query

« Concerns only a few

SELECT .
dim_date.weekday, din_product.category, attrlbUtes from the rOws
SUM(fact_sales.quantity) AS quantity_sold

FROM fact_sales of the fact table

JOIN dim_date ON fact_sales.date_key = dim_date.date_key
JOIN dim_product ON fact_sales.product_sk = dim_product.product_sk
WHERE
dim_date.year = 2013 AND
dim_product.category IN ('Fresh fruit', 'Candy')
GROUP BY

din_date weekday, din_product.category; * What about performance ?

* In row-oriented storage need
to read and bring all the row
i.e. x100 more data than needed

Back to Row-oriented Storage

All the values from one row of a table are stored next to each other

* Inefficient data compression: data of different types are next to
each other

* Inefficient read operations
* interested in a few entries in a row but need to read the whole row

* may want to filter elements based on a condition on one entry but need
to read all rows

Column-oriented Storage ldea

fact_sales table

date_key | product_sk | store_sk | promotion_sk | customer_sk | quantity | net_price | discount_price
StO re a” the Values 140102 69 4 NULL NULL 1 13.99 13.99
140102 69 5 19 NULL 3 14.99 9.99
from one row together X 140102 | 69 5 NULL 191 1 1499 14.99
140102 74 3 23 202 5 0.99 0.89
from each column together / woos | m | 2 | v | v | 1 | e | 2e
140103 31 3 NULL NULL 3 14.99 9.99
140103 31 3 21 123 1 49.99 39.99
row.store column-store 140103 3 8 NULL 233 1 0.99 0.99

oato [l storof procuct prico

Columnar storage layout:
““‘ date_key file contents: 140102, 140102, 140102, 140102, 140103, 140103, 140103, 140103

product_sk file contents: 69, 69,69, 74, 31, 31, 31, 31

store_sk file contents: 4,55,3,2,3,3,8

promotion_sk file contents: NULL, 19, NULL, 23, NULL, NULL, 21, NULL

customer_sk file contents: NULL, NULL, 191, 202, NULL, NULL, 123, 233

quantity file contents: 1,3,15131,1

net_price file contents: 13.99, 14.99, 14,99, 0.99, 2.49, 14.99, 49.99, 0.99

discount_price file contents: 13.99, 9.99, 14.99, 0.89, 2.49, 9.99, 39.99, 0.99

Column-oriented Storage w51 ==

us Processing

us Shipped

us Shipped

* Each column in a different file uUs Shipped
¢ The number of distinct values in a column is often small == ca"“'?d
(not the case for rows) JP Processing
. .. JP Processing

* A column E:ontalns data of the same type => eficient P Shipped
compression UK Py

* To optimize access : sort values in a column ot Canceind
S UK Processing
* all columns sorted the same way to maintain index UK Processing
relation © KE Carcolen

* there may be different sorting possibilities that suit KE Shipped
different queries: materialized views KE Shipped

KE Shipped

Optimizations for Read Operations

* Limiting the amount of data read

« Context: A request that selects a subset of columns

* Solution with columnar storage: we can read only the files corresponding to these
columns
* Filtering based on a condition

« Context: We are interested in items corresponding to a condition

SELECT * FROM Customers WHERE Country="Mexico’

* Solution with columnar storage
* Check the condition by reading only the corresponding column

+ Store a summary (min, max, etc) of the column at the beginning of each partition to fully
skip reading when possible

Write Operations

* Updates in place would be tricky and slow
* Columns are compressed
* We need to keep the ordering of rows

* Use a LSM-tree approach

* Accumulate data in memory

« Write in bulk to the storage

File Formats on Disks

* One representation in memory to File formats in Big Data
suit processing - CSV
« JSON

* Another representation on disks (file

» Avro (JSON-based for Had
formats) to store and access data vro (ased for Hadoop)

. « Parquet (efficient columnar data
eﬁchIently representation for Hadoop)

* To pass from the first to the second - ORC

and vice versa:
+ encoding/decoding Several formats are supported by:

» Distributed file systems (eg, HDFS)
* NoSQL databases (eg, MongoDB)

« Data processing engines (eg, Spark)

* marshalling/unmarshalling

e serialization/deserialization

Text Files

* Examples of such formats
« CSV
+ JSON
« XML

* Advantages
* Readable by humans

* Drawbacks
* High storage footprint

* Very low read performance

Binary Encoding Formats

°* Examples

* Avro (Hadoop)
e Thrift (Facebook)

* Protocol Buffers (Google)

* |dea
* Describe the data using a schema

* Pack all fields describing an item (a row) in a binary format

* Advantages

» Can lead to huge space reduction

Protocol Buffers (Google)

JSON Protocol Buffers
¢ Schema IDL
"userName": "Martin",
"favoriteNumber": 1337,
"{nterests": ["daydreaming", "hacking"] message Person {
} required string user_name = 1;
optional int64 favorite_number = 2;
repeated string interests = 3;

81 bytes

see result next slide ‘

Protocol Buffers Example (cont.)

Byte sequence (59 bytes):

Ob(00 01|00 00 00 06|4d 61 72 74 69 6e|0a|00 02|00 00 00 0O

00 00 05 39|0£|00 03|0b[(00 00 00 02|00 00 00 Ob|64 61 79 64

72 65 61 6d 69 6e 67|00 00 00 07|68 61 63 6b 69 6e 67|00

Breakdown: 59 bytes
type 11 (string) fieldtag=1 length 6 M a r t i n
Ob 00 01 00 00 00 06 4d 61 72 74 69 6e
type 10 (i64) fieldtag =2 1337
Oa 00 02 00 00 00 00 00 00 05 39
type 15 (list) fieldtag =3 item type 11 (string) 2 list items
of 00 03 Ob 00 00 00 02
length 11 d a y d r e a m i n g
00 00 00 Ob 64 61 79 64 72 65 61 6d 69 6e 67
length 7 h a ¢ k i n g end of struct
00 00 00 07 68 61 63 6b 69 6e 67 00

Compact
Protocol Buffers Example (cont.)

Byte sequence (33 bytes):

0a|06(4d 61 72 74 69 6e(10|b9 Oa|la(0Ob|64 61 79 64 72 65 61

6d 69 6e 67|1a|07|68 6
e a 1 63 6b 69 6e 67 33 bytes
Breakdown:
S 56 length6 M a r t i n
eld tag type 2 (string) 1337

looooifo1o 0a| (06| [4d 61 72 74 69 6e

looo10100[111001]

fieldtag=2 type O (varint)
|00010|000 10(|b9 Oa 10111001||0|0001010|

fieldtag=3 type 2 (string) length11 d a y d r e a m i n g
|00011|010 la| |(Ob 64 61 79 64 72 65 61 6d 69 6e 67

fieldtag=3 type 2 (string) lengthy h a ¢ k i n g

looo11fo1 o] la| [07| [68 61 63 6b 69 6e 67

Parquet (column-oriented)

* Afile consists of one or more row groups

* A set of rows

* Arow group contains exactly one column chunk per column

* A column chunk is contiguous in the file

* Metadata are stored at the end of the file

* Position of each column chunk

« Statistics about each chunk

* Min/Max statistics for numbers
« Dictionary filtering for other columns (as long as less than 40k different values)

Example

https://blog.usejournal.com/sorting-and-parquet-3azs2ssscdes

* Description of the data
« Customer table with one column being the country

SELECT * FROM Customers WHERE Country="Mexico’

* Some numbers:
* 10M rows
* 10k rows per row group
* 1% of the customers are from Mexico

* Amount of data read to answer the query
« With a row-based format: All data

« With an unsorted parquet file:
* Probability of a row group with no customer from Mexico: 0.9910000 = 2 25 x 10-32
* So small that practically all row groups need to be read

* With a sorted parquet file: 1% of the row groups (10)

Another example

https://www linkedin.com/pulse; we-taking-only-half-advantage-columnar-file-format-eric-sun;

* Description of the data
* A website log dataset
* Information in one entry:

timestamp, user 1d, cookle, page id, http header, ... -

* Queries filter against page_id

e Some results

* Avro:
+ Compressed data footprint: 1.4 TB
* Amount of data read on query: 1.4 TB
* ORC unsorted/sorted:
+ Compressed data footprint: 0.9 TB/ 0.5 TB
* Amount of data read on query: 300 GB /200 MB

