
Vania Marangozova

Vania.Marangozova@imag.fr

2023-2024

mailto:Vania.Marangozova@imag.fr

• Designing Data-Intensive Applications by Martin Kleppmann
• Chapter 3: Column-oriented storage

• Chapter 4: Formats for Encoding Data

• Presentation of Prof Michael Stonebraker @EPFL (2013)
(https://slideshot.epfl.ch/play/suri_stonebraker):
Everything You Learned in Your DBMS Class is Wrong

2V.Marangozova LSDM 2023-2024

• Transacton-based systems vs Data Warehouses

• Principles of column-oriented storage

• Representation of large data on disks

V.Marangozova LSDM 2023-2024 3

• Early days: write to a database = business transaction
• Sell at Walmart: Client xxx bought yyy for zzz on ttt in store sss

• Applications are interactive
• Interaction with the end users

• Online Transaction Processing Systems (OLTP)

• A transaction
• Involves a sequence of reads/updates of a small number of records

• Requires high availability and low latency

V.Marangozova LSDM 2023-2024 4

• Typically using the
relational model

• Data is organized in
tables which contain
rows

• One row = une piece of
information containing
different facts/attributes

V.Marangozova LSDM 2023-2024 5

• Persistent storage is divised in blocks

• Each block contains several rows

• When a row needs to be accessed,
the whole row (the whole block !) needs
to be loaded into memory

• Speeding up with indexes
• indexes are application specific, depending

on the type of queries

V.Marangozova LSDM 2023-2024 6

Block 1

Block 2

• An index is an additional data
structure
• does not change the contents of the DB

• impacts performance: overhead on a
write operation: do the write and
update the index
• need to do the write very fast
• nothing compares to a sequential append to

a file as random access is suicidal

• The simplest index = hash index
<key, value>
• in memory structure

• key -> file offset

• good for frequent updates of values

V.Marangozova LSDM 2023-2024 7

• Compaction
• break the log into segments of a

certain size

• close a segment file when it reaches a
certain size

• make subsequent writes to a new
segment file

• compact segments

• as segments become smaller, merge
several segments together

• segments are never modified

V.Marangozova LSDM 2023-2024 8

• Hash-based indexes' limitations
• must fit into memory: problem with a great number of keys

• range queries are not efficient: need to query key by key

• SSTables = Sorted String Table
• <key, value> sequence is sorted by key

• merging segments is simple and efficient: mergesort

• ne need to keep an index of all the keys in memory: sparce index is enough

• segments may by compressed

V.Marangozova LSDM 2023-2024 9

• Use (balanced) tree data structure for representation in memory
• this in memory index is called memtable

1. write => update memtable

2. size memtable > threshold => write it to dosk as SSTable

3. read => search in memtable, then in most recent segment, etc

4. periodically do compaction

• To face crashes, maintain an additional append log of recent writes
• a separate log on disk to which every write is immediately appended (as in the hash)

 => Log-Structured Merge-Tree (LSM-Tree)

V.Marangozova LSDM 2023-2024 10

• Busienesses have not only their OLTP systems, but also maintain
Data Warehouses

• Data Warehouse = data system used for data analytics
• How much have the PPP store sold this month ?

• Which product is the most popular ?

• ...

• OLAP = Online Analytic Processing Systems (OLAP)

• Access pattern
• Scan over a large number of records

• Compute statistics (make dashboards, ... business intelligence... data analyst)

V.Marangozova LSDM 2023-2024 11

• Performance
• Disturb the OLTP requests

• Not adapted to serve OLAP requests

• Complexity
• An entreprise might have multiple OLTP systems

V.Marangozova LSDM 2023-2024 12

V.Marangozova LSDM 2023-2024 13

• Extract from the OLTP

• Transform the data

• Load into the OLAP

• Contains a read-only
copy of the data
of all the OLTP systems
 in the company

V.Marangozova LSDM 2023-2024 14

• Star or Snowflake model

• A central table = fact table
• usually contains data with

x100 attributes

• Example : purchase, date, client, ...

• Dimension tables
• giving more information on some

"dimensions" of the facts

• Example : store table

V.Marangozova LSDM 2023-2024 15

• Concerns only a few
attributes from the rows
of the fact table

• What about performance ?
• In row-oriented storage need

to read and bring all the row
i.e. x100 more data than needed

V.Marangozova LSDM 2023-2024 16

All the values from one row of a table are stored next to each other

• Inefficient data compression: data of different types are next to
each other

• Inefficient read operations
• interested in a few entries in a row but need to read the whole row

• may want to filter elements based on a condition on one entry but need
to read all rows

V.Marangozova LSDM 2023-2024 17

Store all the values

from one row together

from each column together

V.Marangozova LSDM 2023-2024 18

✗
✓

• Each column in a different file
• The number of distinct values in a column is often small

(not the case for rows)

• A column contains data of the same type => eficient
compression

• To optimize access : sort values in a column
• all columns sorted the same way to maintain index

relation J

• there may be different sorting possibilities that suit
different queries: materialized views

V.Marangozova LSDM 2023-2024 19

• Limiting the amount of data read
• Context: A request that selects a subset of columns

• Solution with columnar storage: we can read only the files corresponding to these
columns

• Filtering based on a condition
• Context: We are interested in items corresponding to a condition

 SELECT * FROM Customers WHERE Country=’Mexico’
• Solution with columnar storage

• Check the condition by reading only the corresponding column

• Store a summary (min, max, etc) of the column at the beginning of each partition to fully
skip reading when possible

V.Marangozova LSDM 2023-2024 20

• Updates in place would be tricky and slow
• Columns are compressed

• We need to keep the ordering of rows

• Use a LSM-tree approach
• Accumulate data in memory

• Write in bulk to the storage

V.Marangozova LSDM 2023-2024 21

• One representation in memory to
suit processing

• Another representation on disks (file
formats) to store and access data
efficiently

• To pass from the first to the second
and vice versa:

• encoding/decoding

• marshalling/unmarshalling

• serialization/deserialization

File formats in Big Data
• CSV

• JSON

• Avro (JSON-based for Hadoop)

• Parquet (efficient columnar data
representation for Hadoop)

• ORC

• ...

Several formats are supported by:
• Distributed file systems (eg, HDFS)

• NoSQL databases (eg, MongoDB)

• Data processing engines (eg, Spark)

V.Marangozova LSDM 2023-2024 22

• Examples of such formats
• CSV

• JSON

• XML

• Advantages
• Readable by humans

• Drawbacks
• High storage footprint

• Very low read performance

V.Marangozova LSDM 2023-2024 23

• Examples
• Avro (Hadoop)

• Thrift (Facebook)

• Protocol Buffers (Google)

• Idea
• Describe the data using a schema

• Pack all fields describing an item (a row) in a binary format

• Advantages
• Can lead to huge space reduction

V.Marangozova LSDM 2023-2024 24

JSON Protocol Buffers

V.Marangozova LSDM 2023-2024 25

Schema IDL

see result next slide
81 bytes

V.Marangozova LSDM 2023-2024 26

59 bytes

V.Marangozova LSDM 2023-2024 27

33 bytes

• A file consists of one or more row groups
• A set of rows

• A row group contains exactly one column chunk per column
• A column chunk is contiguous in the file

• Metadata are stored at the end of the file
• Position of each column chunk

• Statistics about each chunk
• Min/Max statistics for numbers

• Dictionary filtering for other columns (as long as less than 40k different values)

V.Marangozova LSDM 2023-2024 28

• Description of the data
• Customer table with one column being the country

 SELECT * FROM Customers WHERE Country=’Mexico’
• Some numbers:

• 10M rows
• 10k rows per row group
• 1% of the customers are from Mexico

• Amount of data read to answer the query
• With a row-based format: All data
• With an unsorted parquet file:

• Probability of a row group with no customer from Mexico: 0.9910000 = 2.25 × 10−32

• So small that practically all row groups need to be read

• With a sorted parquet file: 1% of the row groups (10)

V.Marangozova LSDM 2023-2024 29

• Description of the data
• A website log dataset
• Information in one entry:

 timestamp, user_id, cookie, page_id, http_header, ... •

• Queries filter against page_id

• Some results
• Avro:

• Compressed data footprint: 1.4 TB
• Amount of data read on query: 1.4 TB

• ORC unsorted/sorted:
• Compressed data footprint: 0.9 TB / 0.5 TB

• Amount of data read on query: 300 GB / 200 MB

V.Marangozova LSDM 2023-2024 30

