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Lakehouse

* Developed to address the limitations of traditional
data lakes and data warehouses

* Provides ACID (atomicity, consistency, isolation, and durability)
transactions

* Unifies various data analytics tasks, such as batch and streaming
workloads, machine learning, and SQL
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Data Warehouses
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* Aggregate and process structured

data
» Relational databases

- ACID Data warehouses
. . Extract
© Management and optimization .%) Tanstorm
functions, Robustness ETL Load

® Hard to scale and respond to the
Big Data velocity needs
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* Big low-cost storage repositories
« Big Data/ Internet scale il and
vall%atll)on ETL ) Data wa rehouses

* Raw format

* File-based, running on cluster of
machines (distributed)

* Unreliable, BASE model k Datalake

* Basically available (replication of data)

* Soft-state (data values may change) - m E ‘))) .

« Eventually consistent
Structured, semistructured, and unstructured data

https://aws.amazon.com/fr/compare/the—difference-between—acid-and—base—database/




The Hybrid Solution
(before lakehouses) Q @ @ @:

Data Machine
TReports Science Learning
* Predominant (2021 white paper) @@ ]‘ ()
Data Warehouses
« Raw data in the data lake 1’
 ETL to put data in the warehouse %%g
* Analyses on both (lake &
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Structured, Semi-structured & Unstructured Data




Hybrid Architecture Problems

* Reliability
* keeping data consistent between data lakes and warehouses is Q @ L@ %
difficult Bl  Reports s 3::3: . r:;:ii:z
* Data staleness. SISl
* The data in the warehouse is stale compared to that of the data s
lake X%
. . . ETL
* Limited support for advanced analytics.
.o°::°01-o°: °‘|o.|‘:?°o~1
* None of the leading ML systems, such as TensorFlow, PyTorch and LR et ot igettivey
XGBoost, work well on top of warehouses SRR

Structured, Semi-structured & Unstructured Data

Total cost of ownership.

» Apart from paying for continuous ETL, users pay double the
storage cost




Lakehouse
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Metadata and governance layer

ETL Data lake

EBEE0=

Structured, semistructured,
and unstructured data
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The Delta Lake Ideas
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etadata, Caching, and
Indexing Layer
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Transaction mgmt.,
_, governance, versioning,
auxiliary datastructures

Data filesin open
format (e.qg. Parquet)

Structured, Semi-structured & Unstructured Data

Low-cost data storage, open format

Meta-data transactional layer

* which objects are part of tables

SQL performance
« caching

* auxiliary data structures such as indexes and
statistics

» data layout optimizations

ML processing

» declarative dataframe API




e \ [ N\ [

@ \ ) One platform for
D e t a L a e Streaming Data Machine all data use cases

| analytics | | Bl | science | | Iearnlng
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e ACID transactions

Apache

High-
« Scalable metadata handling spark || Presto || Fink || Trino ff Hive igh-performance

query engines

* Unification of streaming and

batch data processing Scalable,aper,
general purpose
transactional

data format

Delta Lake
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Structured, semistructured, and unstructured data

Data lake for
all your data
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Delta Lake Table (1)

* Data files : Parquet format

* Transaction log

* Ordered log of all transactions my_delta_table
* Atransaction is encoded in a json file ( :
Transaction log
_delta_log
00000.json )
00001.json Table versions

— Jate=2023-11-26 Hive-style partitioning (optional)
1.parquet
2.parquet  p Datafiles
3.parquet




https://delta-io.github.io/delta-rs/usage/examining-table/#metadata

Delta Lake Table (2)

Metadata
* Metadata
. table's schema, par'titioning, The delta log maintains basic metadata about a table, including:
configuration settings « Aunique id

e A name, if provided

e A description, if provided

e The list of partitionColumns .
e The created_time of the table

e Amap of table configuration . This includes fields such as delta.appendOnly, which if
true indicates the table is not meant to have data deleted from it.

>>> from deltalake import DeltaTable

>>> dt = DeltaTable("../rust/tests/data/simple_table")

>>> dt.metadatal()

Metadata(id: 5fba94ed-9794-4965-babe-6ee3cOd22af9, name: None, description: None,




Delta Lake Table (3)

* Schema
* the data’s structure, columns, data types, etc.
>>> from deltalake import DeltaTable
>>> dt = DeltaTable("../rust/tests/data/simple_table")

>>> dt.schema()
Schema([Field(id, PrimitiveType("long"), nullable=True)])

* Checkpoints

* Every 10 transactions

* For faster recovery




Delta Transaction Protocol

* Any client who wants to read or write to a Delta table must first query the
transaction log

A. Create initial table B. Delete rows
my._delta_table-v0 my_delta_table-v1
_delta_log _delta log
L-00000.json current version 00000.json

00001.json current version

— date=2023-11-26 — date=2023-11-26

1.parquet } Datafiles
2.parquet Data files

3.parquet




Multiversion Concurrency Control

* Observation for deletes
It is faster to create a new file comprising the unaffected rows
rather than modifying the existing Parquet file(s)

* allows data to be safely read and updated concurrently

» Time travel = multiple versions available




Data and Metadata

« Butthe transaction log reflects
only committed transactions

 When modifying tables, some
incomplete files may be created

Source filesystem Source filesystem
File 3 | Fiea | ((Fes ) [ ries
Job1
te ta t2
is . £z Jtable Jtable Jtable
Jtable Jtable Jtable gparquett gparquett /I.parquett ﬁparqueg
/1.parquet /1.parquet /1.parquet /3.parquet paigue paigue 'p‘"q”e
/2.parquet /2.parquet /2.parquet /4.parquet /3.parquet
/3.parquet /3'.parquet Transaction log Transaction log Transaction log
/1.parquet /1.parquet /1.parquet /3.parquet
/2.parquet /2.parquet /2.parquet /4.parquet




Built-In Evolutivity

.....................................

. Delta writer protocol versions

Protocol version5

[ Column mapping ]

Generated column

Change data feed

Protocol version 3
CHECK constraints

Protocol version 2

Append-only tables

Invariants

Invariants: properties to be enforced on column data
Append-only: no changes on tables

CHECK: constraints to be enforced

Change data feed: register raw data changes

Generated column: generate additional columns with
user-specified treatments

Column mapping: support different column names




Adoptions

Comcast Apple’s information security team

» Petabytes of data « 300 billion events per day

« Compute utilization from « writing hundreds of terabytes of
640VMs to 64VMs data daily

« 84 to 3 jobs




