

Large-Scale Data Management and Distributed Systems

IV. Stream Processing

Vania Marangozova

Vania.Marangozova@imag.fr

2025-2026

References

- Lecture notes of V.Leroy
- Lecture notes of T.Ropars
- *Designing Data-Intensive Applications* by Martin Kleppmann
 - Chapter 11

Why Stream Processing ?

- Batch Processing
 - Data are stored in files
 - Process the **whole** data at once
 - Examples: Hadoop MapReduce, Spark, etc
- In many use-cases, **new data are generated continuously**
 - Data from sensors
 - Data from social networks
 - Web traffic
 - Etc.

=> Applications need real-time processing

A little detour...

- Businesses have not only their OLTP (Online Transaction Processing) systems, but also maintain Data Warehouses
- Data Warehouse = data system used for data analytics
 - How much have the PPP store sold this month ?
 - Which product is the most popular ?
 - ...
- OLAP = Online Analytic Processing Systems (OLAP)
- Access pattern
 - Scan over a large number of records
 - Compute statistics
- Updates hourly/daily/weekly...

Real-time Processing

In many cases, data should be processed **as early** as possible:

- Detecting fraudulent behavior
 - Log analysis
 - Access filtering
 - ...
- Identifying malfunctioning systems
 - Monitoring information about crashes, non valid values, ...
- Monitoring trends
 - social networks
 - system load
 - ...

Adapting batch processing systems?

- Processing all the data of the day at the end of each day ?
 - High latency 😞
- How can we process data more frequently ?
 - Use stream processing/engines

Stream vs Batch processing

- Batch processing
 - Good for analyzing a static dataset
 - Focuses on **throughput**
 - Allows running **complex** analysis requiring multiple iterations on the data
- Stream processing
 - Good to analyze **live** data
 - Continuously updates results based on new data
 - Focuses on **latency** (between data production and update of the results)
 - Processes data once

Stream Processing Computations

Typical stream analytics

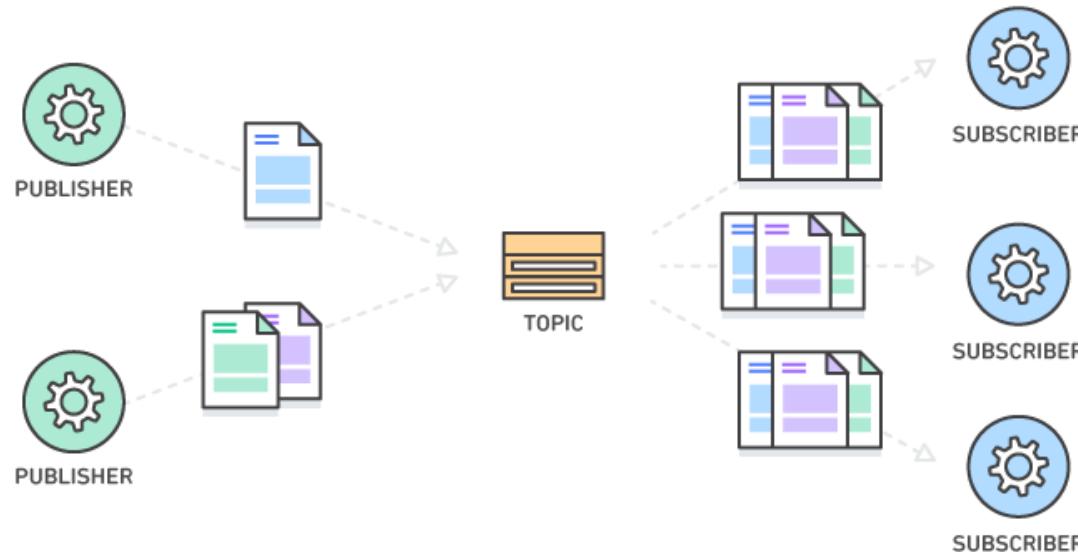
- Measuring event rates
- Computing rolling statistics (average, histograms, etc)
- Comparing statistics to previous values (detecting trends)
- Sampling data
- Filtering data
- Applying basic machine learning algorithms

Aspects of the “How” Question

- How to transmit data from the data sources (producers) to the data analyzers (consumers)?
- How to process events in a distributed way?
- How to deal with failures?
- How to reason about time?
- How to maintain a state over time?

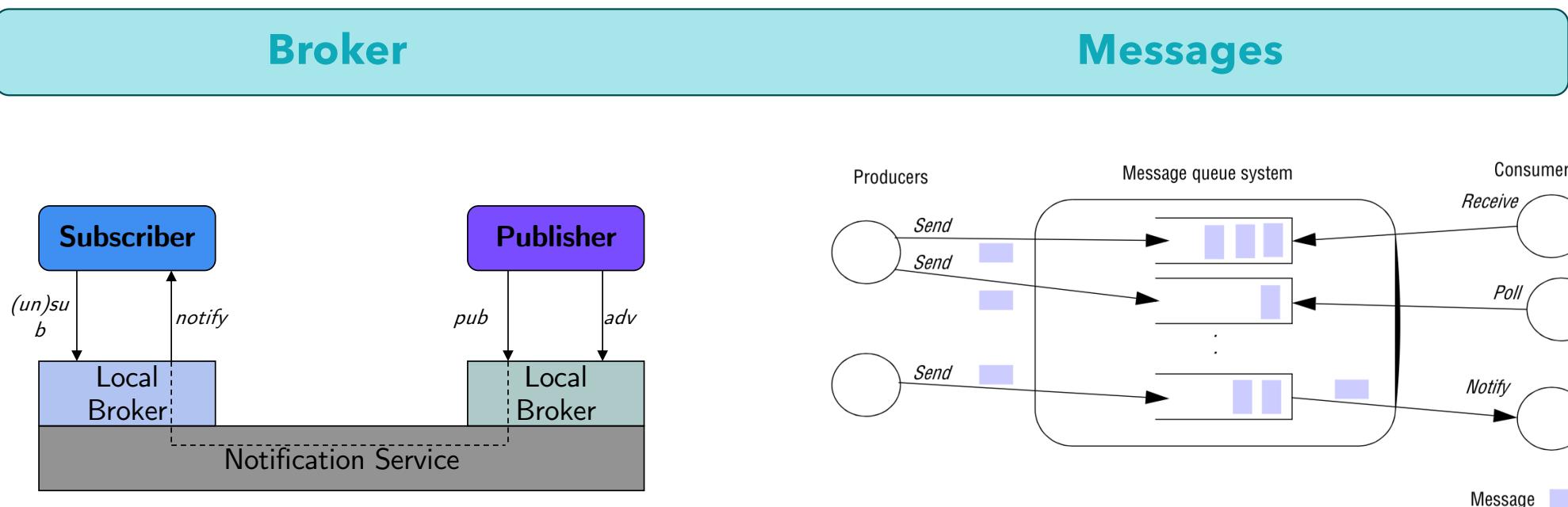
Stream Processing Architecture (Element of)

- Generalization of the **publish-subscribe** communication paradigm

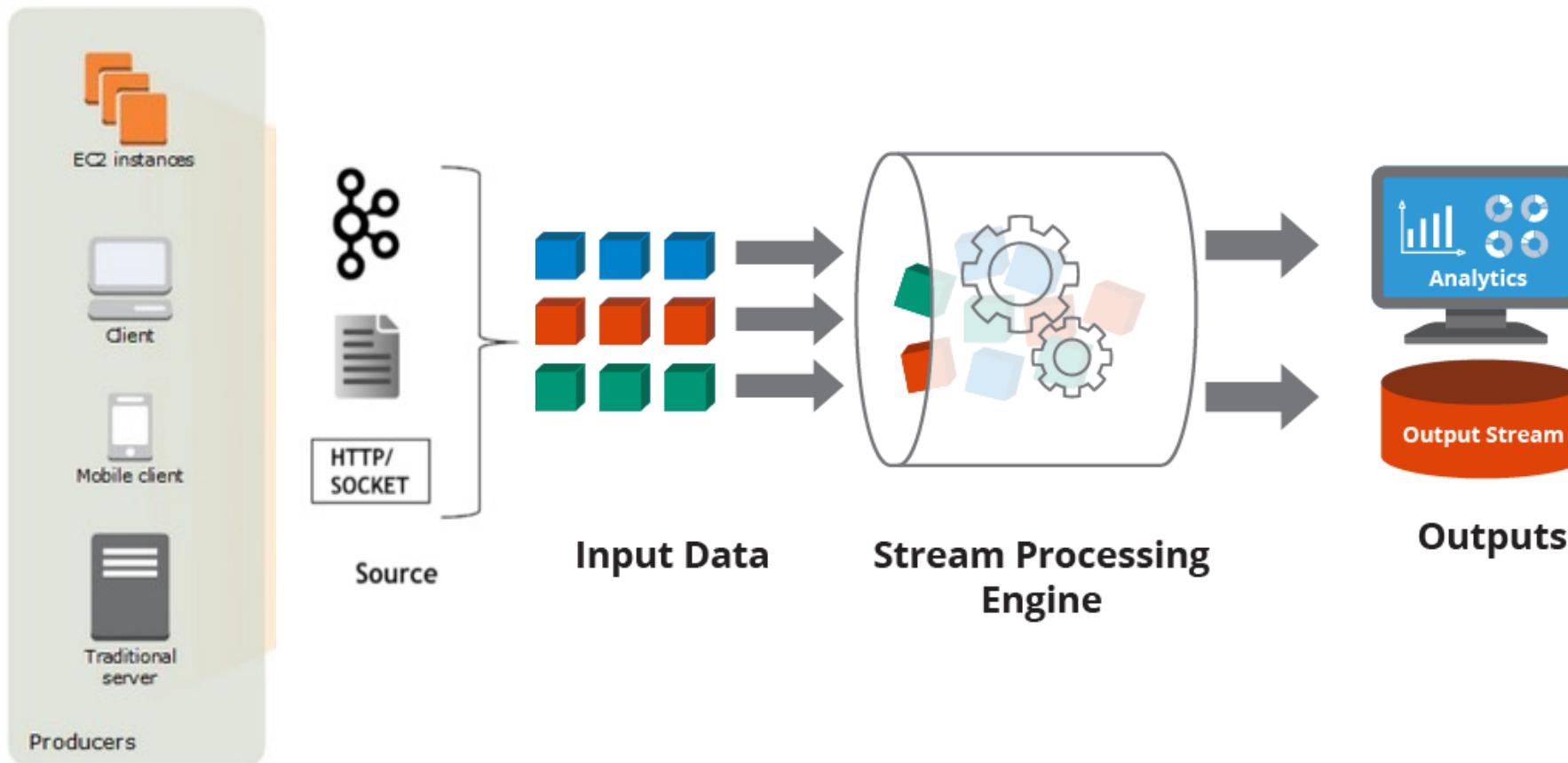


From <https://aws.amazon.com/fr/what-is/pub-sub-messaging/>

Publish-Subscribe



Stream Processing Engines



Challenges

- Routing messages
 - Some consumers are only interested in some messages
 - Some messages are useful for multiple consumers
- Performance
 - Amount of produced data might be huge
 - Data might be produced faster than they are processed
- Fault tolerance
 - Clients might connect/disconnect at any time
 - The building blocks of the system (message-oriented middleware, MOM) may fail

What Data to Consider for Analysis?

- Messages, *in a standard context*, are transient
 - No permanent trace
 - Even if written to disk, quickly deleted because of the inherent logic and of the data volume (e.g. network packets)
 - **if a new consumer joins, it will analyze only recent data**
- Data in databases and files is persistent
 - everything written is permanently recorded, until explicitly deleted !
 - **if a new request is done, it will analyze the same data**

Can we not have a hybrid, combining the durable storage approach of databases with the low-latency notification facilities of messaging?

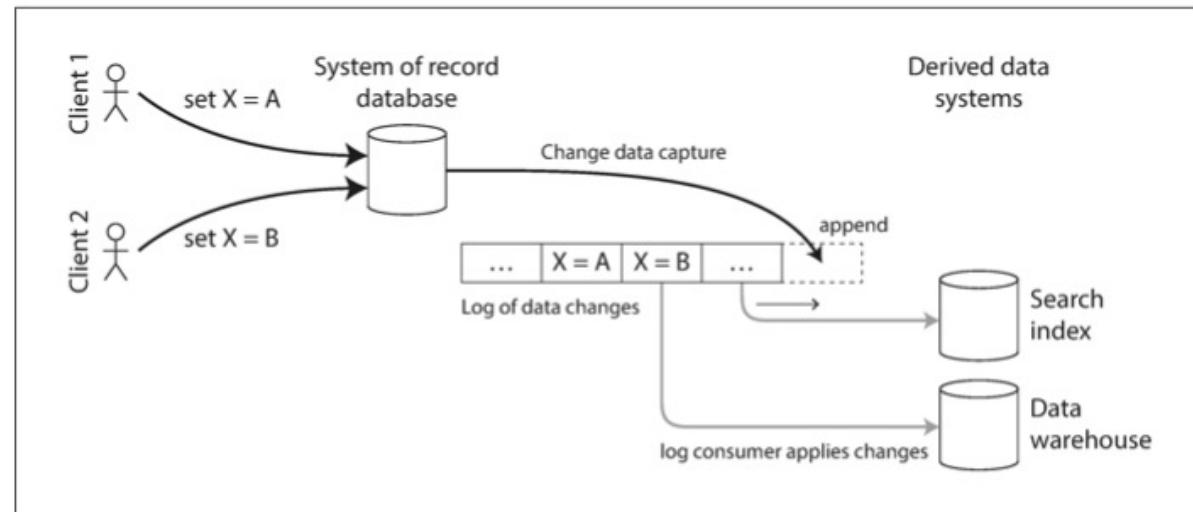
Log-based Message Broker

Main principles

- Maintain a log of all the messages received
 - Append-only sequence of records on disk
- Each record is identified with a sequence number
- The offset of each client in the log can be stored

Existing systems

- Apache Kafka
- Amazon Kinesis Data Streams



Kafka

<https://kafka.apache.org/>

- Originally developed at LinkedIn
- Open-source
- Used by many companies

Kafka Main Principles

A partitioned log

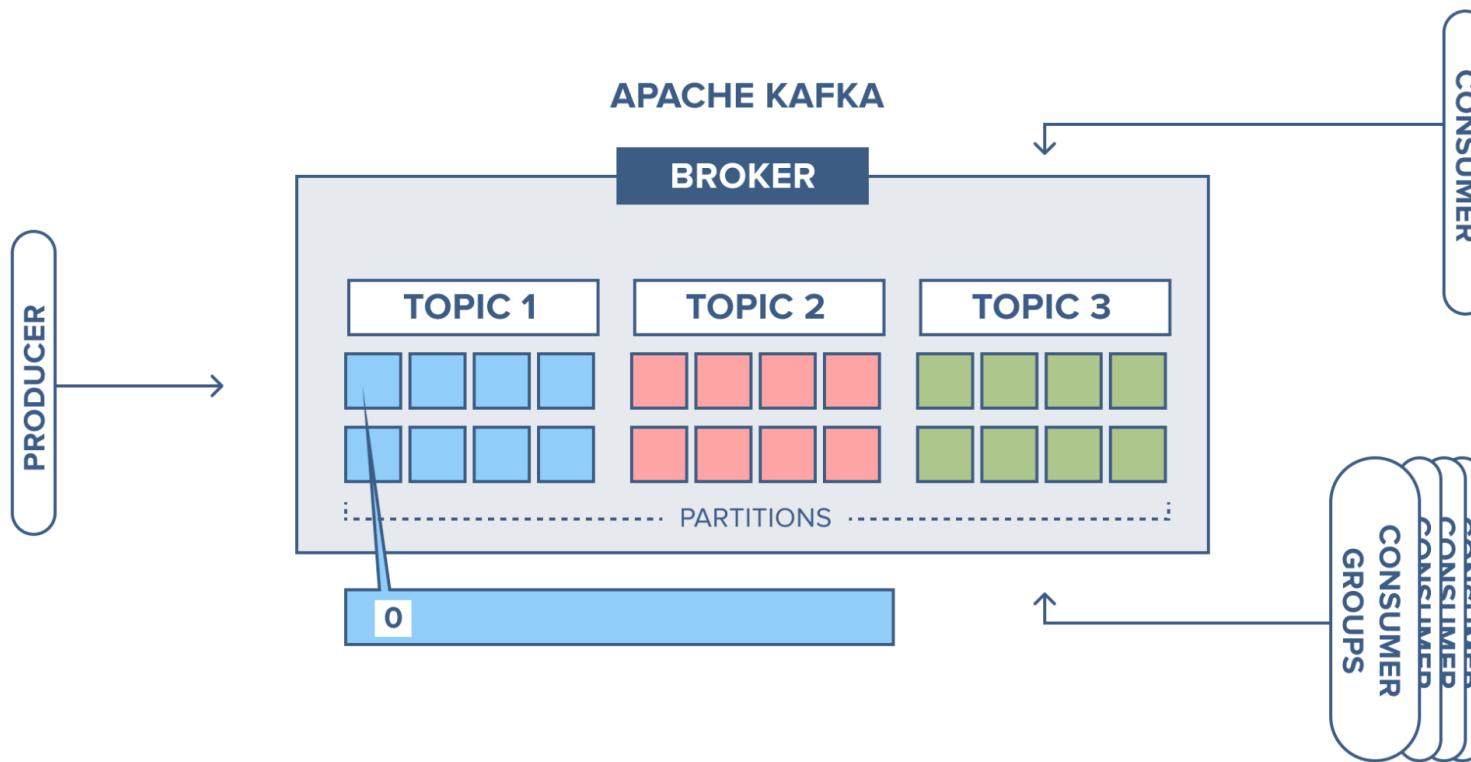
The log is divided into multiple partitions

- Each partition has its own monotonically increasing sequence number
- Partitions can be hosted on different machines
- There is no global order among partitions

Advantages of logs

- Old records can be replayed
- Data are buffered in the log
 - Deal with the case where the consumers are slower than the producers

Kafka Communication Abstractions



Kafka Cluster

Kafka runs multiple brokers, in a cluster

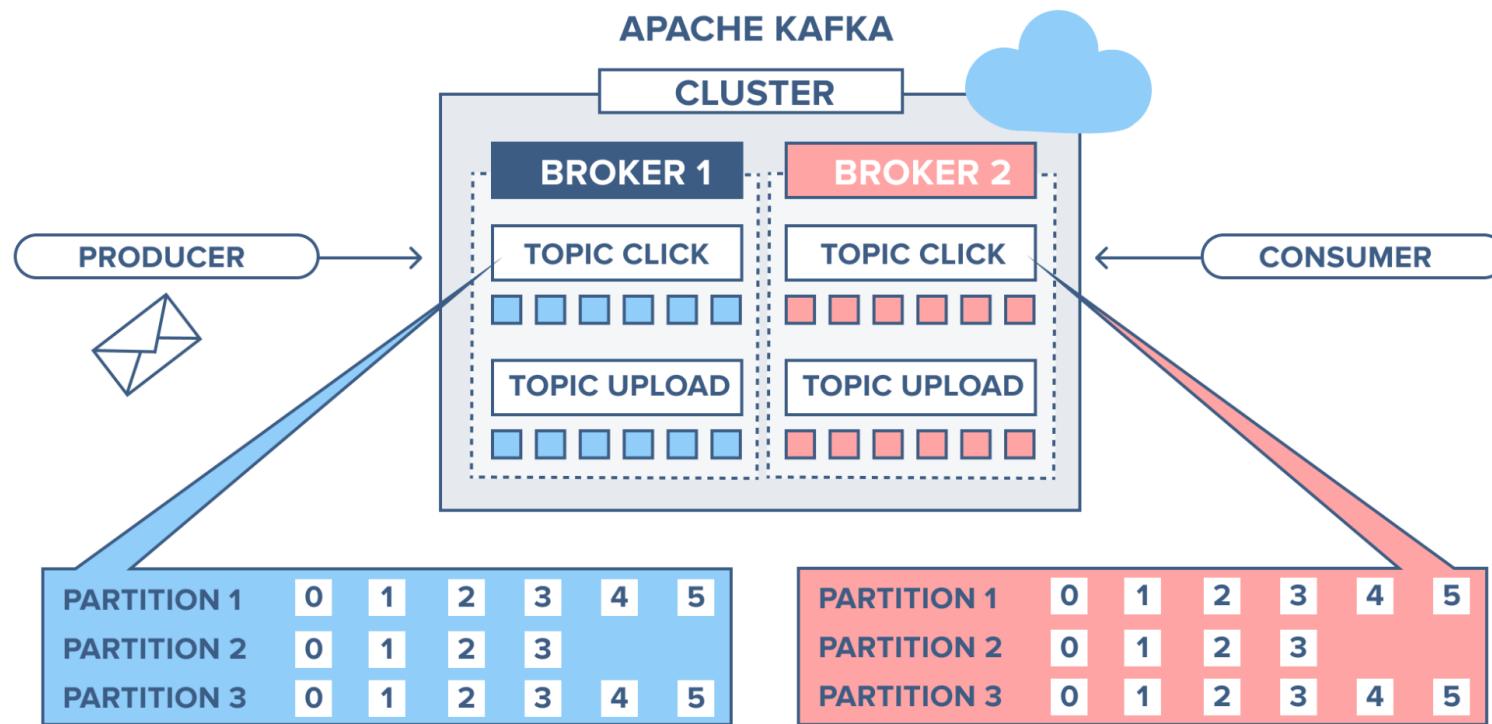
Among brokers, one broker is the *controller*

- For broker management (add brokers if needed)
- Assigns partitions to brokers i.e. which broker manages which partition

For a partition

- One broker is the leader
- Other brokers serve for fault tolerance and are updated by order of the leader

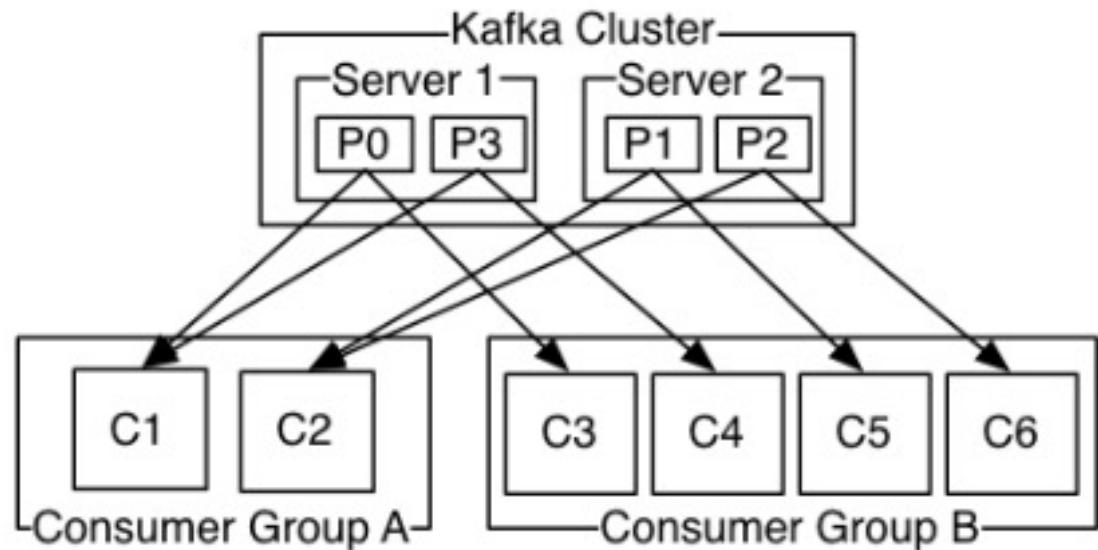
Kafka Cluster



Kafka Consumer Groups

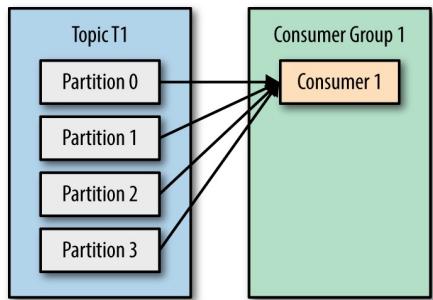
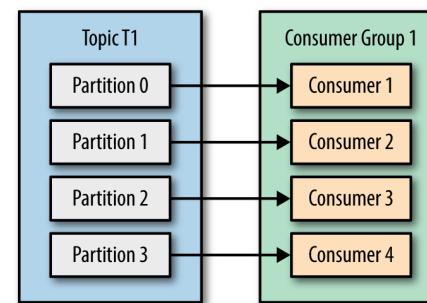
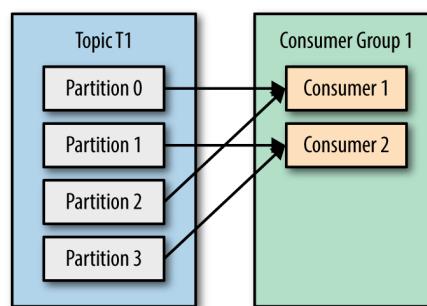
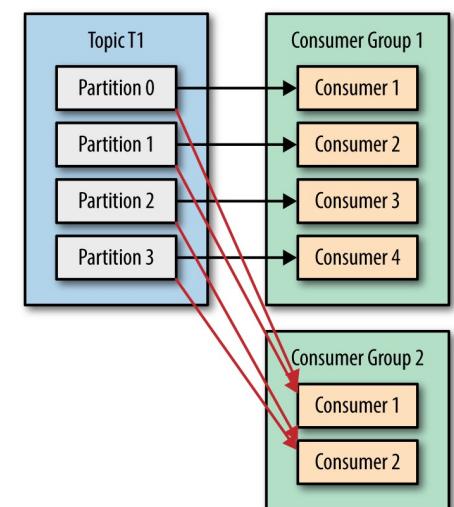
source <https://kafka.apache.org/documentation/#gettingStarted>
<https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/ch04.html>

- Load balancing
- Broadcasting



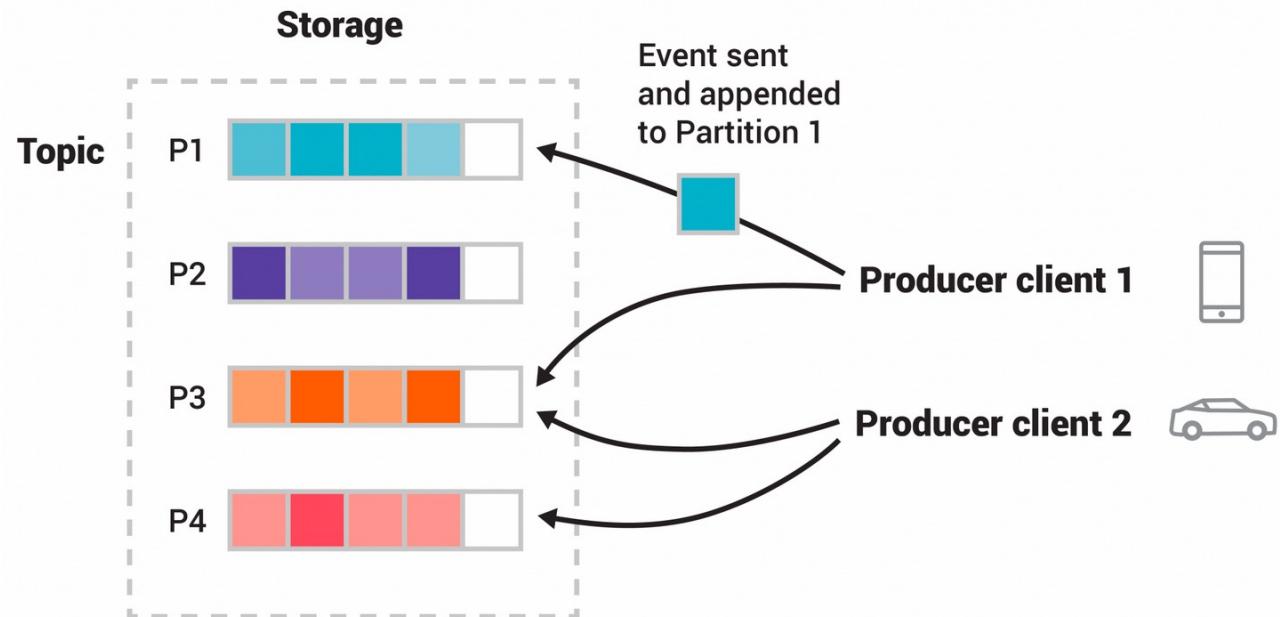
Kafka Consumer Groups

source <https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/ch04.html>



Kafka Topics & Partitions

- By default, the producer will balance messages over all partitions of a topic evenly.
- In some cases, the producer will direct messages to specific partitions. This is typically done using the message key.

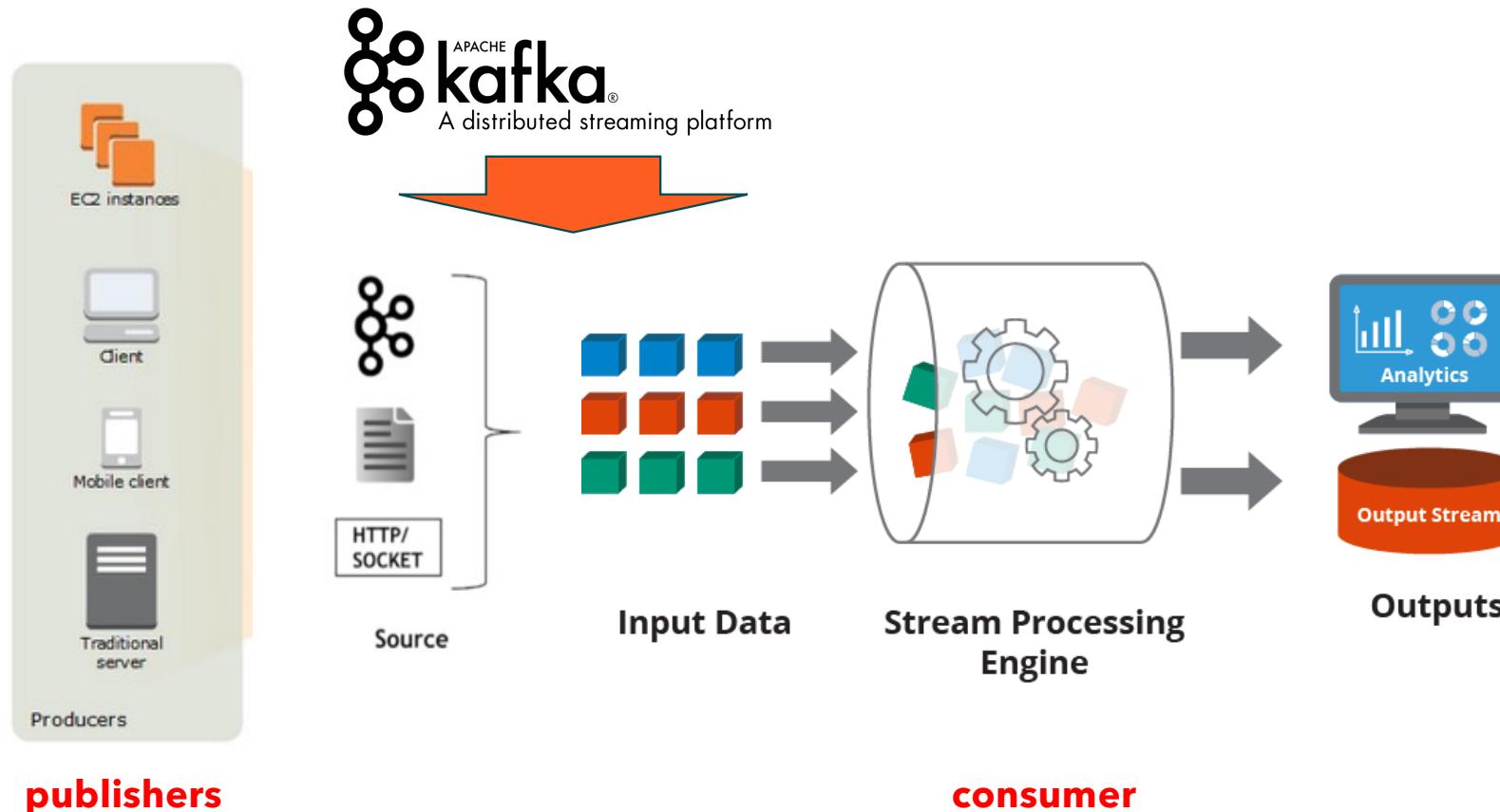


Kafka Fault Tolerance

Data availability

- A Kafka cluster spans multiple nodes
- Partitions are replicated on multiple nodes
- Dealing with consumer disconnections/failures
 - Offset of the consumer in the log partition is recorded permanently
 - The same/another consumer can start processing records from this point
 - Provided delivery semantics:
 - **At-least-once**
 - **At-most-once**
 - In some cases, **exactly-once** semantic can be ensured (relies on transaction mechanisms)

Stream Processing Engines



Stream Processing Engines

Description

- A set of transformations is applied to a stream of records
- A program is a graph of transformations (Directed acyclic graph)
- Transformations are the same operations as in batch processing systems

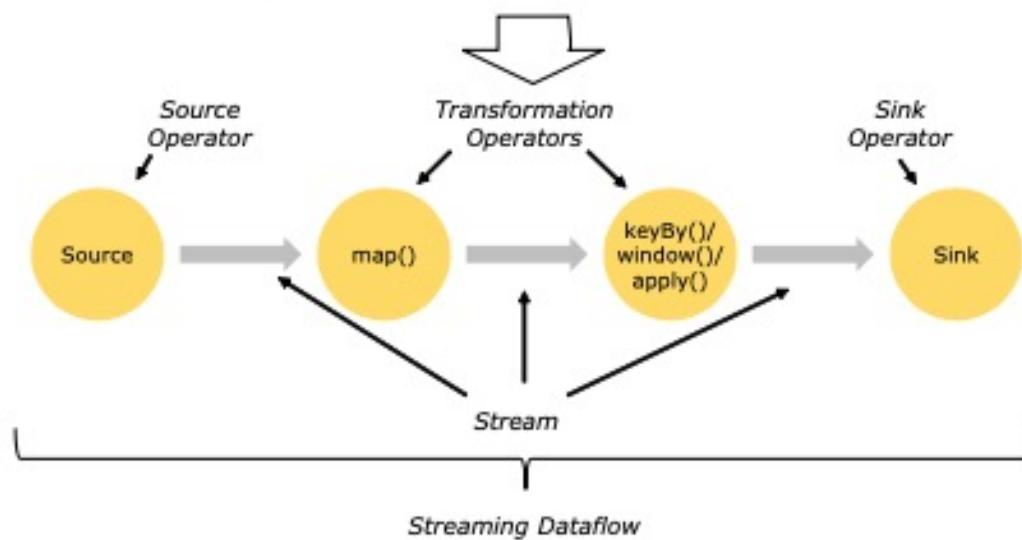
Examples

- Storm
- Flink
- Samza
- Spark streaming

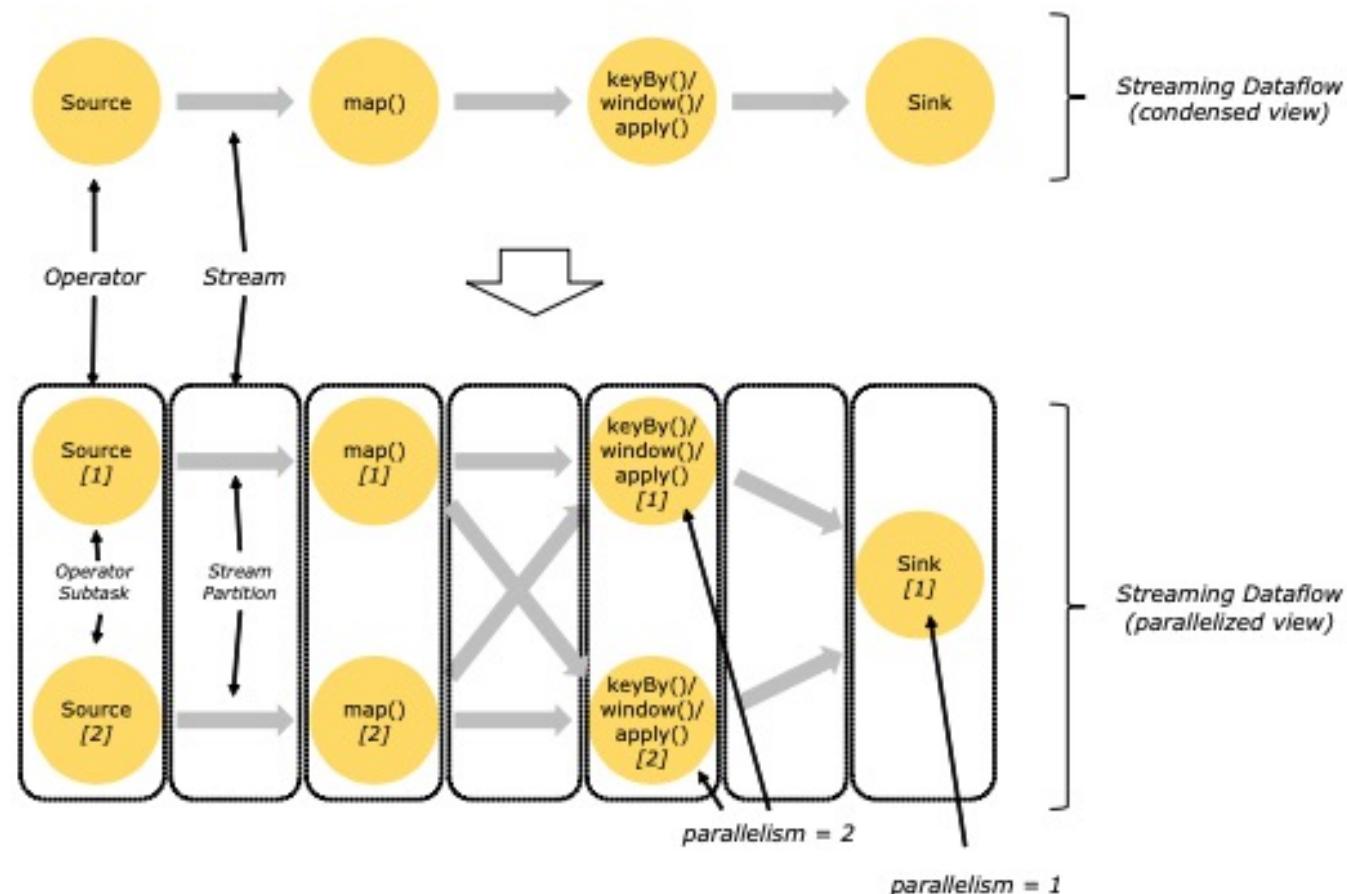
Graph of transformations (Flink)

source <https://ci.apache.org/projects/flink/flink-docs-release-1.6/concepts/programming-model.html>

```
DataStream<String> lines = env.addSource(  
    new FlinkKafkaConsumer<>(...)); } Source  
  
DataStream<Event> events = lines.map((line) -> parse(line)); } Transformation  
  
DataStream<Statistics> stats = events  
    .keyBy("id")  
    .timeWindow(Time.seconds(10))  
    .apply(new MyWindowAggregationFunction()); } Transformation  
  
stats.addSink(new RollingSink(path)); } Sink
```



Parallel Dataflow (Flink)



Making Time Discrete

To run computations on a continuous stream, it has to be split into **windows**.

Size of the window

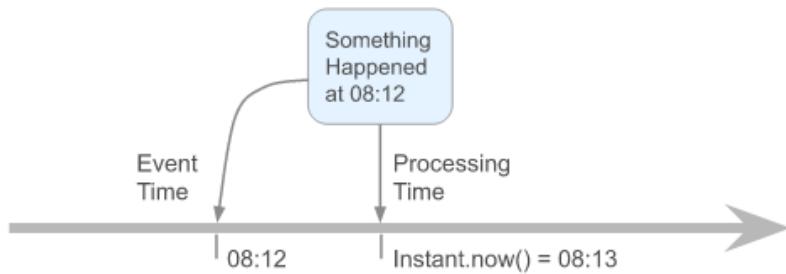
- 1 event: Each event is processed separately (Storm)
- Window's limits are based on:
 - Amount of data received
 - Time
 - Activity (concept of sessions)

2 reference times co-exists in the system

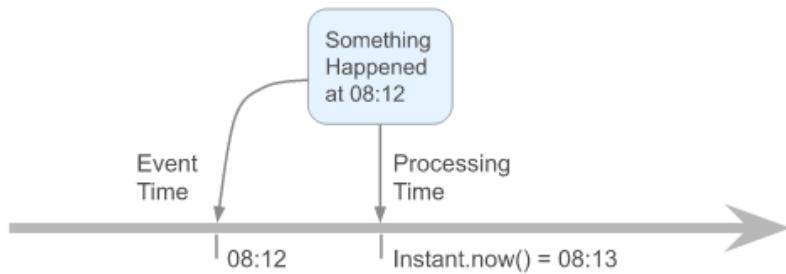
- Event time: time at which the events happened
 - There is also the time at which the event has been published
- Processing time: time at which the events are processed
 - Most systems build windows based on the processing time

Time Disorder

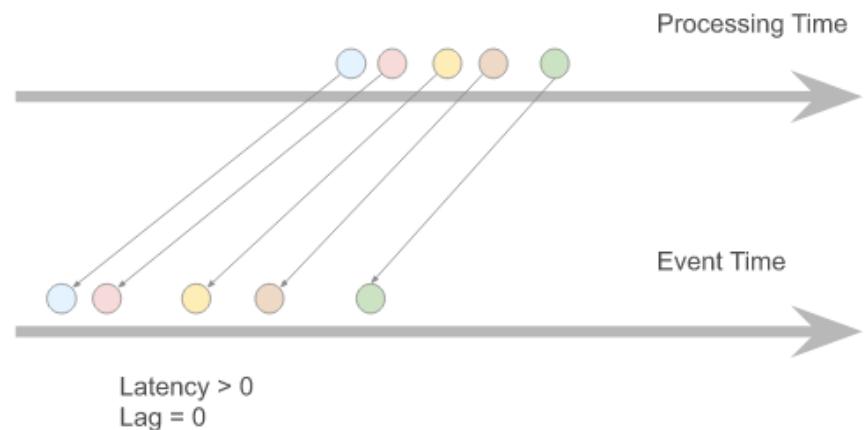
<https://docs.hazelcast.com/hazelcast/5.3/pipelines/event-time>



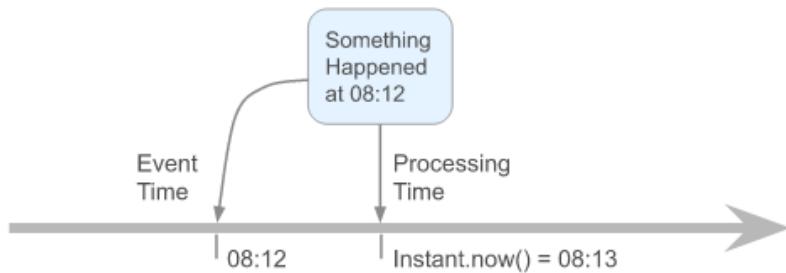
Time Disorder



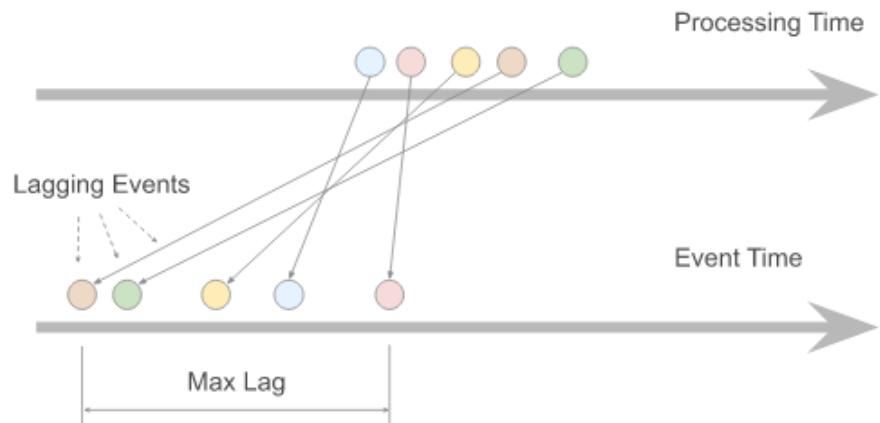
Ordered



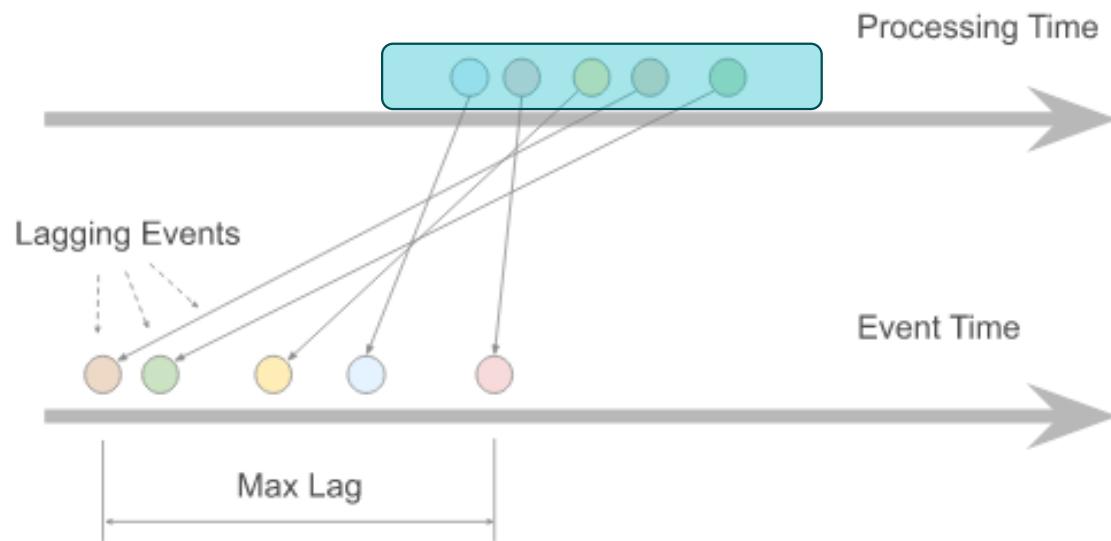
Time Disorder



Not ordered => Maximum event lag ?



Windows



Types of Windows

Sliding window: Fixed-size window

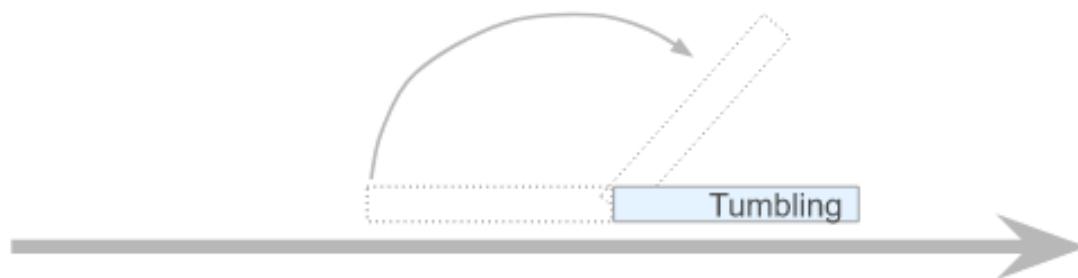
- A new window is considered at each time step

Sliding Window

Types of Windows

- Tumbling window: Fixed-size window
 - Each event belongs to one window

Tumbling Window



Types of Windows

- Session window: size not fixed
 - Group together events that happened closely together in time

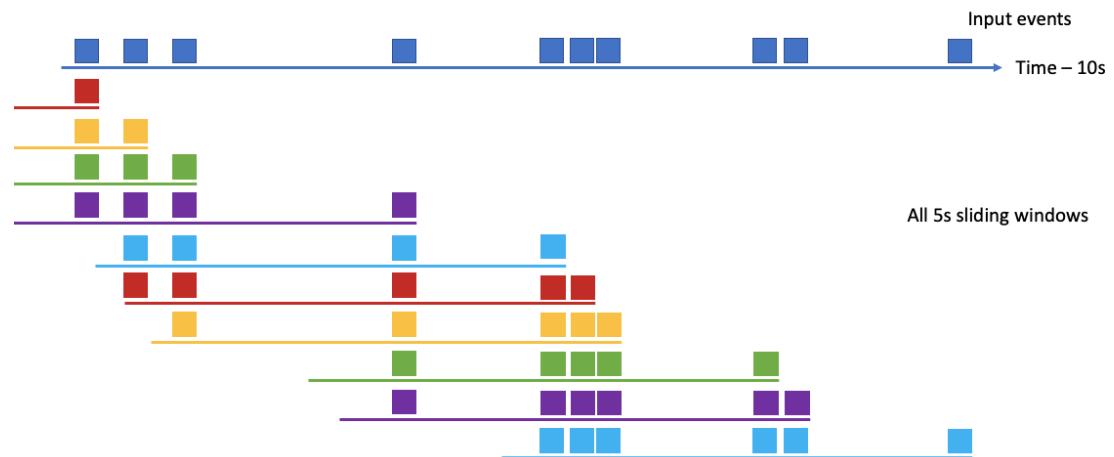
Session Window

Types of Windows

- Hopping window: Fixed-size window, windows overlap
 - hop size = time between the generation of two windows
 - hop size < window size

Every 5 seconds give me the count of Tweets over the last 10 seconds

A 10-second Hopping Window with a 5-second "Hop"



Spark Streaming

Based on micro-batches

- The data stream is divided into micro-batches
 - Tumbling windows
 - Typically 1 to 4 seconds
- Each micro-batch is a RDD
- Multiple receivers can be created to manipulate multiple data streams in parallel
- The receiver tasks are distributed over the workers

Additional References

- <https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101>, T. Akidau, 2015.
- Apache Flink: Stream and Batch Processing in a Single Engine., P. Carbone et al., IEEE, 2015.
- <https://www.oreilly.com/ideas/questioning-the-lambda-architecture>, J. Kreps, 2014.
- and many more.

