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• Lecture notes of V.Leroy

• Lecture notes of  Y.Vernaz

• Lecture notes of  T.Ropars
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• The Basics of Apache Spark

• Spark API

• Programming with PySpark
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• Originally developed at Univ. of California

• Resilient distributed datasets: A fault-tolerant abstraction for in-memory 
cluster computing, M. Zaharia et al. NSDI, 2012. 

• One of the most popular Big Data projects today.
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https://spark.apache.org/faq.html
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• Limitations of Hadoop MapReduce
• Limited performance for iterative algorithms

• Data are flushed to disk after each iteration

• More generally, low performance for complex algorithms

• Main novelties of Spark
• Computing in memory

•  A new computing abstraction: Resilient Distributed Datasets (RDD)
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• Better performances

• Interactives queries

• Supports more operations on data

• A full ecosystem (high-level libraries) 

• Running on your machine or at scale
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• Core API
• Scala

• Python

• Java

• Storage: any supported by Hadoop
• Local FS

• HDFS

• Cassandra

• Amazon S3
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• https://spark.apache.org/

• https://sparkhub.databricks.com/

• Tutorials, blogs, ...
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• Running in local mode
• Spark runs in a JVM

• Spark is coded in Scala

• Read data from your local file system

• Use interactive shell
• Scala (spark-shell)

• Python (pyspark)

• Run locally or distributed at scale
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• Counting lines
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• Spark SQL: For structured data (Dataframes)

• Spark Streaming: Stream processing (micro-batching) 

• MLlib: Machine learning

• GraphX: Graph processing

13V.Marangozova LSDM 2023-2024



See Latency Numbers Every Programmer Should Know
https://gist.github.com/jboner/2841832

Memory is way faster than disks

Read latency

• HDD: a few milliseconds

• SDD: 10s of microseconds (100X faster than HDD) 

• DRAM: 100 nanoseconds (100X faster than SDD)
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Graph by P. Johnson 
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• Hadoop, at each step, data go through the disk

• Spark, data remain in memory (if possible)
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• Failure is the norm rather than the exception

• If there is a failure, data in memory is lost

⟹
• The RDD Proposal = Resilient Distributed Dataset

• Read-only partitioned collection of records
• Creation of a RDD through deterministic operations (transformations) 

on
• Data stored on disk 
• an existing RDD
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• RDD = objects

• Transformations
• Programmer defines RDDs using Transformations 

• Applied to data on disk or to existing RDDs

• Examples of transformations: map, filter, join

• Actions
• Operations that return a value or export data to the file system 

• Examples of actions: count, reduce
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• Lineage = a description of an RDD
• The data source on disk

• The sequence of applied transformations
• Same transformation applied to all elements 

• Low footprint for storing a lineage

• Fault tolerance
• RDD partition lost: 

replay all transformations on the subset of input data or 
the most recent RDD available 

• Deal with stragglers: 
generate a new copy of a partition on another node
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https://spark.apache.org/docs/latest/cluster-overview.html

• Cluster Manager: 
The system in charge of allocating 
resources to applications

• Worker nodes: 
Nodes of the cluster on which the Spark applications are run

V.Marangozova LSDM 2023-2024 20

https://spark.apache.org/docs/latest/cluster-overview.html


• Driver (= Master) 
Main program of a spark application 
• Created when an application is submitted
• Translates the user’s program into a graph of tasks 
• Assigns tasks to executors

• Executor: A dedicated process (a new JVM) created on a worker to execute an 
application
• Created when an application is submitted

• By default a Spark apps tries to use all resources of the cluster 
• One executor per worker – An executor uses all cores of the worker

• Can include multiple executor threads
• Execute tasks on partitions
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• Partitions are the unit of parallelism in Spark

• RDDs are divided into partitions

• To execute an operation on a RDD, a task per partition is 
created

• Tasks can be executed in parallel

• Partitions and executors

• All items of one partition are on the same executor 

• An executor can process multiple partitions
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See https://spark.apache.org/docs/latest/rdd-programming-guide.html# parallelized-collections
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• Number of partitions
• RDDs are automatically partitioned based on the configuration of the target 

platform (nodes, CPUs)

• As many partitions as the number of available cores

• If the input data are already partitioned:
• Same number of partitions as in the input data

• Example: RDD from HDFS file – 1 partition per HDFS block

• The number of partitions in a RDD can be changed by the programmer
• repartition(): change the number of partitions 

• coalesce(): merge partitions
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Two default partitioners

• Range partitioner
• Default partitioner for raw data

•  Consecutive items are put in the same partition

• Hash partitioner
• Applied after ”ByKey” operations

• partition = key.hashCode() mod numPartitions

• The user can define its own partitioning function
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Transformations create dependencies between RDDs : 2 kinds
• Narrow dependencies: Each partition in the parent is used by at most 

one partition in the child

• Wide (shuffle) dependencies: Each partition in the parent is used by 
multiple partitions in the child

• Impact of dependencies
• Scheduling: Which tasks can be run independently

• Fault tolerance: Which partitions are needed to recreate a lost 
partition
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Figure by M. Zaharia et al 
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• Transformations are executed only when an action is called on the 
corresponding RDD

• Examples of optimizations allowed by lazy evaluation
• Read file from disk + action first(): no need to read the whole file

• Read file from disk + transformation filter(): No need to create an intermediate 
object that contains all lines
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Costly operations

• Triggered by:
• ByKey operations

• repartition operations 

• etc.

• May involves significant communication over the network

• Involves disk I/O operations
• In each source partition, data split by destination partitions are saved to disk.

• Purpose: limit the number of operations to re-execute in case of crash
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Main idea

• By default, a RDD is recomputed for each action run on it.

• A RDD can be cached in memory calling persist() or cache()
• Useful is multiple actions to be run on the same RDD (iterative 

algorithms)

• Can lead to 10X speedup

• Note that a call to persist does not trigger transformations evaluation

• cache() means that data have to be persisted in memory

29V.Marangozova LSDM 2023-2024



• Tasks are run when the user calls an action

• A Directed Acyclic Graph (DAG) of transformations is built based on the 
RDD’s lineage

• The DAG is divided into stages. Boundaries of a stage defined by:
• Wide dependencies

• Already computed RDDs

• Tasks are launched to compute missing partitions from each stage until 
target RDD is computed
• Data locality is taken into account when assigning tasks to workers
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Cached partitions in black 



What is it?

• Object representing a connection to an execution cluster 

• We need a SparkContext to build RDDs

Creation

• Automatically created when running in shell (variable sc) 

• To be initialized when writing a standalone application

Initialization

• Run in local mode with nb threads = nb cores: local[*] 

• Run in local mode with 2 threads: local[2]

• Run on a spark cluster: spark://HOST:PORT
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• Python shell 

• $ pyspark --master local[*] 

• Python program 

• import pyspark
sc = pyspark.SparkContext("local[*]") 
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Create RDD from existing iterator

• Use SparkContext.parallelize()
• Optional second argument to define the number of partitions 

 data = [1, 2, 3, 4, 5]
 distData = sc.parallelize(data) 

Create RDD from a file

• Utilisation de SparkContext.textFile()
data = sc.textFile("myfile.txt") 

     hdfsData = sc.textFile("hdfs://myhdfsfile.txt") 
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• map(f): Applies f to all elements of the RDD. f generates a single item

• flatMap(f): Same as map but f can generate 0 or several items

• filter(f): New RDD with the elements for which f returns true

• union(other)/intersection(other): New RDD being the 
union/intersection of the initial RDD and other.

• cartesian(other): When called on datasets of types T and U, returns a 
dataset of (T, U) pairs (all pairs of elements)

• distinct(): New RDD with the distinct elements

• repartition(n): Reshuffle the data in the RDD randomly to create either 
more or fewer partitions and balance it across them
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https: //spark.apache.org/docs/latest/rdd-programming-guide.html#transformations 
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• groupByKey(): When called on a dataset of (K, V) pairs, returns a 
dataset of (K, Iterable<V>) pairs.

• reduceByKey(f): When called on a dataset of (K, V) pairs, Merge the 
values for each key using an associative and commutative reduce 
function.

• aggregateByKey(): see documentation

• join(other): Called on datasets of type (K, V) and (K, W), returns a 
dataset of (K, (V, W)) pairs with all pairs of elements for each key.
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• reduce(f): Aggregate the elements of the dataset using f (takes two 
arguments and returns one). 

• collect(): Return all the elements of the dataset as an array. 

• count(): Return the number of elements in the dataset. 

• take(n): Return an array with the first n elements of the dataset. 

• countByKey(): Only available on RDDs of type (K, V). Returns a 
hashmap of (K, Int) pairs with the count of each key. 
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https://spark.apache.org/docs/latest/rdd-programming-guide.html#actions 
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• Accumulator
• Use-case: Accumulate values over all tasks 

• Declare an Accumulator on the driver

•  Updates by the tasks 
are automatically propagated 
to the driver.

• Default accumulator: 
operator ’+=’ on int and float. 
•  User can define custom

 accumulator functions
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