
Vania Marangozova

Vania.Marangozova@imag.fr

2023-2024

mailto:Vania.Marangozova@imag.fr

• Lecture notes of V.Leroy

• Lecture notes of Y.Vernaz

• Lecture notes of T.Ropars

2V.Marangozova LSDM 2023-2024

• The Basics of Apache Spark

• Spark API

• Programming with PySpark

3V.Marangozova LSDM 2023-2024

• Originally developed at Univ. of California

• Resilient distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing, M. Zaharia et al. NSDI, 2012.

• One of the most popular Big Data projects today.

4V.Marangozova LSDM 2023-2024

https://spark.apache.org/faq.html

5V.Marangozova LSDM 2023-2024

https://spark.apache.org/faq.html

• Limitations of Hadoop MapReduce
• Limited performance for iterative algorithms

• Data are flushed to disk after each iteration

• More generally, low performance for complex algorithms

• Main novelties of Spark
• Computing in memory

• A new computing abstraction: Resilient Distributed Datasets (RDD)

6V.Marangozova LSDM 2023-2024

• Better performances

• Interactives queries

• Supports more operations on data

• A full ecosystem (high-level libraries)

• Running on your machine or at scale

7V.Marangozova LSDM 2023-2024

• Core API
• Scala

• Python

• Java

• Storage: any supported by Hadoop
• Local FS

• HDFS

• Cassandra

• Amazon S3

8V.Marangozova LSDM 2023-2024

• https://spark.apache.org/

• https://sparkhub.databricks.com/

• Tutorials, blogs, ...

V.Marangozova LSDM 2023-2024 9

https://spark.apache.org/

• Running in local mode
• Spark runs in a JVM

• Spark is coded in Scala

• Read data from your local file system

• Use interactive shell
• Scala (spark-shell)

• Python (pyspark)

• Run locally or distributed at scale

10V.Marangozova LSDM 2023-2024

• Counting lines

11V.Marangozova LSDM 2023-2024

12V.Marangozova LSDM 2023-2024

• Spark SQL: For structured data (Dataframes)

• Spark Streaming: Stream processing (micro-batching)

• MLlib: Machine learning

• GraphX: Graph processing

13V.Marangozova LSDM 2023-2024

See Latency Numbers Every Programmer Should Know
https://gist.github.com/jboner/2841832

Memory is way faster than disks

Read latency

• HDD: a few milliseconds

• SDD: 10s of microseconds (100X faster than HDD)

• DRAM: 100 nanoseconds (100X faster than SDD)

V.Marangozova LSDM 2023-2024 14

https://gist.github.com/jboner/2841832

Graph by P. Johnson

15V.Marangozova LSDM 2023-2024

• Hadoop, at each step, data go through the disk

• Spark, data remain in memory (if possible)

16V.Marangozova LSDM 2023-2024

• Failure is the norm rather than the exception

• If there is a failure, data in memory is lost

⟹
• The RDD Proposal = Resilient Distributed Dataset

• Read-only partitioned collection of records
• Creation of a RDD through deterministic operations (transformations)

on
• Data stored on disk
• an existing RDD

17V.Marangozova LSDM 2023-2024

• RDD = objects

• Transformations
• Programmer defines RDDs using Transformations

• Applied to data on disk or to existing RDDs

• Examples of transformations: map, filter, join

• Actions
• Operations that return a value or export data to the file system

• Examples of actions: count, reduce

18V.Marangozova LSDM 2023-2024

• Lineage = a description of an RDD
• The data source on disk

• The sequence of applied transformations
• Same transformation applied to all elements

• Low footprint for storing a lineage

• Fault tolerance
• RDD partition lost:

replay all transformations on the subset of input data or
the most recent RDD available

• Deal with stragglers:
generate a new copy of a partition on another node

19V.Marangozova LSDM 2023-2024

https://spark.apache.org/docs/latest/cluster-overview.html

• Cluster Manager:
The system in charge of allocating
resources to applications

• Worker nodes:
Nodes of the cluster on which the Spark applications are run

V.Marangozova LSDM 2023-2024 20

https://spark.apache.org/docs/latest/cluster-overview.html

• Driver (= Master)
Main program of a spark application
• Created when an application is submitted
• Translates the user’s program into a graph of tasks
• Assigns tasks to executors

• Executor: A dedicated process (a new JVM) created on a worker to execute an
application
• Created when an application is submitted

• By default a Spark apps tries to use all resources of the cluster
• One executor per worker – An executor uses all cores of the worker

• Can include multiple executor threads
• Execute tasks on partitions

21V.Marangozova LSDM 2023-2024

• Partitions are the unit of parallelism in Spark

• RDDs are divided into partitions

• To execute an operation on a RDD, a task per partition is
created

• Tasks can be executed in parallel

• Partitions and executors

• All items of one partition are on the same executor

• An executor can process multiple partitions

22

See https://spark.apache.org/docs/latest/rdd-programming-guide.html# parallelized-collections

V.Marangozova LSDM 2023-2024

• Number of partitions
• RDDs are automatically partitioned based on the configuration of the target

platform (nodes, CPUs)

• As many partitions as the number of available cores

• If the input data are already partitioned:
• Same number of partitions as in the input data

• Example: RDD from HDFS file – 1 partition per HDFS block

• The number of partitions in a RDD can be changed by the programmer
• repartition(): change the number of partitions

• coalesce(): merge partitions

V.Marangozova LSDM 2023-2024 23

Two default partitioners

• Range partitioner
• Default partitioner for raw data

• Consecutive items are put in the same partition

• Hash partitioner
• Applied after ”ByKey” operations

• partition = key.hashCode() mod numPartitions

• The user can define its own partitioning function

V.Marangozova LSDM 2023-2024 24

25V.Marangozova LSDM 2023-2024

Transformations create dependencies between RDDs : 2 kinds
• Narrow dependencies: Each partition in the parent is used by at most

one partition in the child

• Wide (shuffle) dependencies: Each partition in the parent is used by
multiple partitions in the child

• Impact of dependencies
• Scheduling: Which tasks can be run independently

• Fault tolerance: Which partitions are needed to recreate a lost
partition

26

Figure by M. Zaharia et al

V.Marangozova LSDM 2023-2024

• Transformations are executed only when an action is called on the
corresponding RDD

• Examples of optimizations allowed by lazy evaluation
• Read file from disk + action first(): no need to read the whole file

• Read file from disk + transformation filter(): No need to create an intermediate
object that contains all lines

27V.Marangozova LSDM 2023-2024

Costly operations

• Triggered by:
• ByKey operations

• repartition operations

• etc.

• May involves significant communication over the network

• Involves disk I/O operations
• In each source partition, data split by destination partitions are saved to disk.

• Purpose: limit the number of operations to re-execute in case of crash

V.Marangozova LSDM 2023-2024 28

Main idea

• By default, a RDD is recomputed for each action run on it.

• A RDD can be cached in memory calling persist() or cache()
• Useful is multiple actions to be run on the same RDD (iterative

algorithms)

• Can lead to 10X speedup

• Note that a call to persist does not trigger transformations evaluation

• cache() means that data have to be persisted in memory

29V.Marangozova LSDM 2023-2024

• Tasks are run when the user calls an action

• A Directed Acyclic Graph (DAG) of transformations is built based on the
RDD’s lineage

• The DAG is divided into stages. Boundaries of a stage defined by:
• Wide dependencies

• Already computed RDDs

• Tasks are launched to compute missing partitions from each stage until
target RDD is computed
• Data locality is taken into account when assigning tasks to workers

30V.Marangozova LSDM 2023-2024

31V.Marangozova LSDM 2023-2024

Cached partitions in black

What is it?

• Object representing a connection to an execution cluster

• We need a SparkContext to build RDDs

Creation

• Automatically created when running in shell (variable sc)

• To be initialized when writing a standalone application

Initialization

• Run in local mode with nb threads = nb cores: local[*]

• Run in local mode with 2 threads: local[2]

• Run on a spark cluster: spark://HOST:PORT

32V.Marangozova LSDM 2023-2024

• Python shell

• $ pyspark --master local[*]

• Python program

• import pyspark
sc = pyspark.SparkContext("local[*]")

33V.Marangozova LSDM 2023-2024

Create RDD from existing iterator

• Use SparkContext.parallelize()
• Optional second argument to define the number of partitions

 data = [1, 2, 3, 4, 5]
 distData = sc.parallelize(data)

Create RDD from a file

• Utilisation de SparkContext.textFile()
data = sc.textFile("myfile.txt")

 hdfsData = sc.textFile("hdfs://myhdfsfile.txt")

34V.Marangozova LSDM 2023-2024

• map(f): Applies f to all elements of the RDD. f generates a single item

• flatMap(f): Same as map but f can generate 0 or several items

• filter(f): New RDD with the elements for which f returns true

• union(other)/intersection(other): New RDD being the
union/intersection of the initial RDD and other.

• cartesian(other): When called on datasets of types T and U, returns a
dataset of (T, U) pairs (all pairs of elements)

• distinct(): New RDD with the distinct elements

• repartition(n): Reshuffle the data in the RDD randomly to create either
more or fewer partitions and balance it across them

35

https: //spark.apache.org/docs/latest/rdd-programming-guide.html#transformations

V.Marangozova LSDM 2023-2024

• groupByKey(): When called on a dataset of (K, V) pairs, returns a
dataset of (K, Iterable<V>) pairs.

• reduceByKey(f): When called on a dataset of (K, V) pairs, Merge the
values for each key using an associative and commutative reduce
function.

• aggregateByKey(): see documentation

• join(other): Called on datasets of type (K, V) and (K, W), returns a
dataset of (K, (V, W)) pairs with all pairs of elements for each key.

36V.Marangozova LSDM 2023-2024

• reduce(f): Aggregate the elements of the dataset using f (takes two
arguments and returns one).

• collect(): Return all the elements of the dataset as an array.

• count(): Return the number of elements in the dataset.

• take(n): Return an array with the first n elements of the dataset.

• countByKey(): Only available on RDDs of type (K, V). Returns a
hashmap of (K, Int) pairs with the count of each key.

37

https://spark.apache.org/docs/latest/rdd-programming-guide.html#actions

V.Marangozova LSDM 2023-2024

38V.Marangozova LSDM 2023-2024

39V.Marangozova LSDM 2023-2024

40V.Marangozova LSDM 2023-2024

V.Marangozova LSDM 2023-2024 41

V.Marangozova LSDM 2023-2024 42

• Accumulator
• Use-case: Accumulate values over all tasks

• Declare an Accumulator on the driver

• Updates by the tasks
are automatically propagated
to the driver.

• Default accumulator:
operator ’+=’ on int and float.
• User can define custom

 accumulator functions

43V.Marangozova LSDM 2023-2024

